[1] Abbassi, W., Rehman, F.:
Adaptive integral sliding mode stabilization of nonholonomic drift-free systems. Math. Problems Engrg. 2016 (2016), 1-11.
DOI 10.1155/2016/9617283 |
MR 3576111
[2] Aguiar, A. P., Atassi, A. N., Pascoal, A. M.:
Regulation of a nonholonomic dynamic wheeled mobile robot with parametric modeling uncertainty using Lyapunov functions. In: Proc. 39th IEEE Conference on Decision and Control 3 (2000), 2995-3000.
DOI 10.1109/cdc.2000.914276
[3] Aguiar, A. P., Pascoal, A. M.:
Stabilization of the extended nonholonomic double integrator via logic-based hybrid control. IFAC Proc. Vol. 33 (2000), 27, 351-356.
DOI 10.1016/s1474-6670(17)37954-5
[6] Brockett, R. W.:
Asymptotic stability and feedback stabilization. In: Differential Geometric Control Theory (R. W. Brockett, R. S. Millman, and H. J. Sussman, eds.), Birkhauser, Boston 1983, pp. 181-191.
MR 0708502 |
Zbl 0528.93051
[7] Dixon, W. E., Jiang, Z. P., Dawson, D. M.:
Global exponential setpoint control of wheeled mobile robots: A Lyapunov approach. In: Proc. 39th IEEE Conference on Decision and Control 2 (1999), 265-279.
MR 1833045
[8] Escobar, G., Ortega, R., Reyhanoglu, M.:
Regulation and tracking of the nonholonomic double integrator: A field-oriented control approach. Automatica 1 (1998), 125-131.
DOI 10.1016/s0005-1098(97)00155-6 |
MR 1614117
[9] Fang, F., Wei, L.:
Backstepping-based nonlinear adaptive control for coal-fired utility boiler-turbine units. Appl. Energy 3 (2011), 814-824.
DOI 10.1016/j.apenergy.2010.09.003
[10] Godhavn, J-M., Egeland, O.:
A Lyapunov approach to exponential stabilization of nonholonomic systems in power form. IEEE Trans. Automat. Control 7 (1997), 1028-1032.
DOI 10.1109/9.599989 |
MR 1469849
[11] Jiang, Z. P., Nijmeijer, H.:
A recursive technique for tracking control of nonholonomic systems in chained form. In: Proc. 39th IEEE Conference on Decision and Control 2 (1999), 265-279.
DOI 10.1109/9.746253 |
MR 1669982
[12] Kolmanovsky, I., McClamroch, N. H.:
Developments in nonholonomic control problems. IEEE Control Syst. 6 (1995), 20-36.
DOI 10.1109/37.476384
[13] Morin, P., Samson, C.:
Control of Nonlinear Chained Systems: From the Routh-Hurwitz Stability Criterion to Time-Varying Exponential Stabilizers. Springer 2000.
MR 1741954
[14] Pascoal, A. M., Aguiar, A. P.: Practical stabilization of the extended nonholonomic double integrator. In: Proc. 10th Mediterranean Conferenceon Control and Automation, 2002.
[15] Pomet, J. B.:
Explicit design of time-varying stabilizing control laws for a class of controllable systems without drift. Systems Control Lett. 2 (1992), 147-158.
DOI 10.1016/0167-6911(92)90019-o |
MR 1149359
[16] Rehman, F.:
Steering control of nonholonomic systems with drift: The extended nonholonomic double integrator example. Nonlinear Analysis Theory Methods Appl. 8 (2005), 1498-1515.
DOI 10.1016/j.na.2005.03.086 |
MR 2164937
[17] Sun, L.-Y., Tong, S., Liu, Y.:
Adaptive backstepping sliding mode H infinity control of static var compensator. IEEE Trans. Control Systems Technol. 5 (2011), 1178-1185.
DOI 10.1109/tcst.2010.2066975
[18] Wang, Z., Li., S., Fei, S.:
Finite-time tracking control of a nonholonomic mobile robot. Asian J. Control 3 (2009), 344-357.
DOI 10.1002/asjc.112
[19] Zhou, J., Wen, C.:
Adaptive Backstepping Control of Uncertain Systems: Nonsmooth Nonlinearities, Interactions or Time-Variations. Springer 2008.
MR 2391666