[2] Astumian, R. D.:
How molecular motors work - insights from the molecular machinist’s toolbox: the Nobel prize in Chemistry 2016. Chem. Sci. 8 (2017), 840–845.
DOI 10.1039/C6SC04806D
[3] Badjic, J. D., Balzani, V., Credi, A., Silvi, S., Stoddart, J. F.: A molecular elevator. Science 303 (2004), 1845–1849.
[4] Badjic, J. D., Ronconi, C. M., Stoddart, J. F., Balzani, V., Silvi, S., Credi, A.:
Operating molecular elevators. J. Amer. Chem. Soc. 128 (2006), 1489–1499.
DOI 10.1021/ja0543954
[5] Browne, W. R., Feringa, B. L.:
Making molecular machines work. Nat. Nanotechnol. 1 (2006), 25–35.
DOI 10.1038/nnano.2006.45
[6] Cantrill, S. J., Youn, G. J., Stoddart, J. F., Williams, D. J.:
Supramolecular daisy chains. J. Org. Chem. 66 (2001), 6857–6872.
DOI 10.1021/jo010405h
[7] Carroll, G. T., Pollard, M. M., Van Delden, R., Feringa, B. L.:
Controlled rotary motion of light-driven molecular motors assembled on a gold film. Chem. Sci. 1 (2010), 97–101.
DOI 10.1039/c0sc00162g
[8] Coskun, A., Banaszak, M., Astumian, R. D., Stoddart, J. F., Grzybowski, B. A.:
Great expectations: can artificial molecular machines deliver on their promise?. Chem. Soc. Rev. 41 (2012), 19–30.
DOI 10.1039/C1CS15262A
[9] Coskun, A., Spruell, J. M., Barin, G., Dichtel, W. R., Flood, A. H., Botros, Y. Y., Stoddart, J. F.:
High hopes: can molecular electronics realise its potential?. Chem. Soc. Rev. 41 (2012), 4827–4859.
DOI 10.1039/c2cs35053j
[10] Durot, S., Reviriego, F., Sauvage, J. P.:
Copper-complexed catenanes and rotaxanes in motion: 15 years of molecular machines. Dalton Trans. 39 (2010), 10557–10570.
DOI 10.1039/c0dt00457j
[11] Erbas-Cakmak, S,, Leigh, D. A., Mcternan, C. T., Nussbaumer, A. L.: Artificial molecular machines. Chem. Rev. 115 (2015), 10081–10206.
[12] Feringa, B., Wynberg, H.:
Torsionally distorted olefins. Resolution of cis- and trans-4,4’-Bi-1,1’,2,2’,3,3’-hexahydrophenanthrylidene. J. Amer. Chem. Soc. 99 (1977), 602–603.
DOI 10.1021/ja00444a046
[13] Huang, T. J., Brough, B., Ho, C. M., Liu, Y., Flood, A. H., Bonvallet, P. A., Tseng, H. R., Stoddart, J. F., Baller, M., Magonov, S.:
A nanomechanical device based on linear molecular motors. Appl. Phys. Lett. 85 (2004), 5391–5393.
DOI 10.1063/1.1826222
[15] Iwaso, K., Takashima, Y., Harada, A.:
Fast response dry-type artificial molecular muscles with c2 daisy chains. Nat. Chem. 8 (2016), 626–633.
DOI 10.1038/nchem.2513
[18] Kay, E. R., Leigh, D. A., Zerbetto, F.:
Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46 (2007), 72–191.
DOI 10.1002/anie.200504313
[19] Ko, W. H.: Trends and frontiers of MEMS. Sens. Actuators A Phys. 136 (2007), 62–67.
[20] Koumura, N., Geertsema, E. M., Meetsma, A., Feringa, B. L.:
Light-driven molecular rotor: Unidirectional rotation controlled by a single stereogenic center. J. Amer. Chem. Soc. 122 (2000), 12005–12006.
DOI 10.1021/ja002755b
[21] Kudernac, T., Ruangsupapichat, N., Parschau, M., Macia, B., Katsonis, N., Harutyunyan, S. R., Ernst, K. H., Feringa, B. L.:
Electrically driven directional motion of a four-wheeled molecule on a metal surface. Nature 479 (2011), 208–211.
DOI 10.1038/nature10587
[22] Lánský, Z.: Kráčející proteiny v nitru živých buněk. Pokroky Mat. Fyz. Astronom. 61 (2016) 273–284.
[23] Liu, Y., Flood, A. H., Bonvallett, P. A., Vignon, S. A., Northrop, B. H., Tseng, H. R., Jeppesen, J. O., Huang, T. J., Brough, B., Baller, M., Magonov, S., Solares, S. D., Goddard, W. A., Ho, C. M., Stoddart, J. F.:
Linear artificial molecular muscles. J. Amer. Chem. Soc. 127 (2005), 9745–9759.
DOI 10.1021/ja051088p
[24] Pengwang, E., Rabenorosoa, K., Rakotondrabe, M., Andreff, N.:
Scanning micromirror platform based on MEMS technology for medical application. Micromachines 7 (2016), paper No. 24, DOI: 10.3390/mi7020024.
DOI 10.3390/mi7020024
[25] Pollard, M. M., Klok, M., Pijper, D., Feringa, B. L.:
Rate acceleration of light-driven rotary molecular motors. Adv. Funct. Mater. 17 (2007), 718–729.
DOI 10.1002/adfm.200601025
[26] Pollard, M. M., Ter Wiel, M. K. J., Van Delden, R. A., Vicario, J., Koumura, N., Van Den Brom, C. R., Meetsma, A., Feringa, B. L.:
Light-driven rotary molecular motors on gold nanoparticles. Chem. Eur. J. 14 (2008), 11610–11622.
DOI 10.1002/chem.200800814
[28] Vachon, J., Carroll, G. T., Pollard, M. M., Mes, E. M., Brouwer, A. M., Feringa, B. L.:
An ultrafast surface-bound photo-active molecular motor. Photochem. Photobiol. Sci. 13 (2014), 241–246.
DOI 10.1039/C3PP50208B
[29] Van Dongen, S. F. M., Cantekin, S., Elemans, J., Rowan, A. E., Nolte, R. J. M.:
Functional interlocked systems. Chem. Soc. Rev. 43 (2014), 99–122.
DOI 10.1039/C3CS60178A
[30] Wang, J. B., Feringa, B. L.:
Dynamic control of chiral space in a catalytic asymmetric reaction using a molecular motor. Science 331 (2011), 1429–1432.
DOI 10.1126/science.1199844
[31] Xue, M., Yang, Y., Chi, X. D., Yan, X. Z., Huang, F. H.:
Development of pseudorotaxanes and rotaxanes: from synthesis to stimuli-responsive motions to applications. Chem. Rev. 115 (2015), 7398–7501.
DOI 10.1021/cr5005869