Previous |  Up |  Next

Article

Summary:
Abelovu cenu za matematiku získal v roce 2017 francouzský matematik Yves Meyer za rozvoj teorie waveletů. V článku se seznámíme s jeho vědeckým životopisem, hlavní myšlenkou teorie waveletů a jejich použitím v praxi.
References:
[1] Abbott, B. P., et al.: Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116 (2016), paper No. 061102, 1–16. MR 3707758
[2] Brislawn, C. M.: Fingerprints go digital. Notices Amer. Math. Soc. 42 (1995), 1278–1283.
[3] Daubechies, I.: Ten lectures on wavelets. SIAM, CBMS Lecture Notes 61 (1992). MR 1162107 | Zbl 0776.42018
[4] Daubechies, I., Grossmann, A., Meyer, Y.: Painless nonorthogonal expansions. J. Math. Phys. 27 (1986), 1271–1283. MR 0836025 | Zbl 0608.46014
[5] Frazier, M. W.: An introduction to wavelets through linear algebra. Springer, New York, 1999. MR 1692229 | Zbl 0968.42021
[6] Graps, A.: An introduction to wavelets. IEEE, 1995.
[7] Klimenko, S., et al.: Method for detection and reconstruction of gravitational wave transient with networks of advanced detectors. Phys. Rev. D 93 (2016), paper No. 042004. DOI 10.1103/PhysRevD.93.042004
[8] Koukal, S., Křížek, M., Potůček, R.: Fourierovy trigonometrické řady a metoda konečných prvků v komplexním oboru. Academia, Praha, 2002.
[9] Křížek, M., Somer, L., Šolcová, A.: Kouzlo čísel: Od velkých objevů k aplikacím. Edice Galileo, sv. 39. Academia, Praha, 2011.
[10] Meyer, Y.: Nombres de Pisot, nombres de Salem et analyse harmonique. Lecture Notes in Math. 117, Springer-Verlag, 1970. MR 0568288 | Zbl 0189.14301
[11] Meyer, Y.: Algebraic numbers and harmonic analysis. North-Holland, Amsterdam, 1972. MR 0485769 | Zbl 0267.43001
[12] Meyer, Y.: Wavelets, quadrature mirror filters and numerical image processing. Les ondelettes en 1989 (Orsay, 1989), Lecture Notes in Math. 1438, Springer, Berlin, 1990, 14–25, 196–197. DOI 10.1007/BFb0083512 | MR 1083580
[13] Meyer, Y.: Wavelets and operators. Cambridge Stud. Adv. Math. 37, Cambridge Univ. Press, Cambridge, 1992. MR 1228209 | Zbl 0776.42019
[14] Meyer, Y.: Wavelets. Algorithms & applications. SIAM, Philadelphia, 1993. MR 1219953
[15] Meyer, Y.: Quasicrystals, Diophantine approximation and algebraic numbers. Beyond Quasicrystals. Axel, F., Gratias, D. (eds.), Les Editions de Physique, Springer, 1995, 3–16. MR 1420415
[16] Meyer, Y., Coifman, R.: Wavelets. Calderón–Zygmund and multilinear operators. Cambridge Stud. Adv. Math. 48, Cambridge Univ. Press, Cambridge, 1997. MR 1456993 | Zbl 0916.42023
[17] Najzar, K.: Základy teorie waveletů. Karolinum, Praha, 2004.
[18] Najzar, K., Holman, P.: Wavelets. Pokroky Mat. Fyz. Astronom. 44 (1999), 294–303. Zbl 1048.42029
[19] Nečas, J.: Les méthodes directes en théorie des équations elliptiques. Academia, Prague, 1967. MR 0227584
[20] Szabó, B., Babuška, I.: Finite element analysis. John Wiley, New York, 1991. MR 1164869 | Zbl 0792.73003
[21] Vand, V.: Magnifying 100 million times. The Meccano Magazine 36 (1951), 247.
[22] Walnut, F. W.: An introduction to wavelet theory. Appl. Numer. Harmon. Anal., Birkhäuser, Boston, 2002. MR 1854350
[23] Wojtaszczyk, P.: Mathematical introduction to wavelets. Cambridge Univ. Press, Cambridge, 1997. MR 1436437 | Zbl 0865.42026
[24] The Abel Prize: The Abel Prize. http://www.abelprize.no
Partner of
EuDML logo