[4] Cheng, Y. M.: Meshless Methods. Science Press, Beijing (2015), Chinese.
[5] Cheng, R.-J., Ge, H.-X.:
Element-free Galerkin (EFG) method for a kind of two-dimensional linear hyperbolic equation. Chin. Phys. B. 18 (2009), 4059-4064.
DOI 10.1088/1674-1056/18/10/001
[8] Dehghan, M., Salehi, R.:
A method based on meshless approach for the numerical solution of the two-space dimensional hyperbolic telegraph equation. Math. Methods Appl. Sci. 35 (2012), 1220-1233.
DOI 10.1002/mma.2517 |
MR 2945847 |
Zbl 1250.35015
[9] Dehghan, M., Shokri, A.:
A meshless method for numerical solution of a linear hyperbolic equation with variable coefficients in two space dimensions. Numer. Methods Partial Differ. Equations 25 (2009), 494-506.
DOI 10.1002/num.20357 |
MR 2483780 |
Zbl 1159.65084
[12] Jiang, Z., Su, L., Jiang, T.:
A meshfree method for numerical solution of nonhomogeneous time-dependent problems. Abstr. Appl. Anal. 2014 (2014), Article ID 978310, 11 pages.
DOI 10.1155/2014/978310 |
MR 3246371
[16] Li, X., Li, S.:
Analysis of the complex moving least squares approximation and the associated element-free Galerkin method. Appl. Math. Model. 47 (2017), 45-62.
DOI 10.1016/j.apm.2017.03.019 |
MR 3659439
[17] Li, X., Wang, Q.:
Analysis of the inherent instability of the interpolating moving least squares method when using improper polynomial bases. Eng. Anal. Bound. Elem. 73 (2016), 21-34.
DOI 10.1016/j.enganabound.2016.08.012 |
MR 3581428
[18] Li, X., Zhang, S., Wang, Y., Chen, H.:
Analysis and application of the element-free Galerkin method for nonlinear sine-Gordon and generalized sinh-Gordon equations. Comput. Math. Appl. 71 (2016), 1655-1678.
DOI 10.1016/j.camwa.2016.03.007 |
MR 3481094
[20] Szekeres, B. J., Izsák, F.:
Convergence of the matrix transformation method for the finite difference approximation of fractional order diffusion problems. Appl. Math., Praha 62 (2017), 15-36.
DOI 10.21136/AM.2017.0385-15 |
MR 3615476 |
Zbl 06738479
[21] Tang, Y.-Z., Li, X.-L.:
Meshless analysis of an improved element-free Galerkin method for linear and nonlinear elliptic problems. Chin. Phys. B. 26 (2017), 030203.
DOI 10.1088/1674-1056/26/3/030203