Previous |  Up |  Next

Article

Keywords:
star properties; star Lindelöf; space with star countable extent
Summary:
Let $P$ be a topological property. A space $X$ is said to be star P if whenever $\mathcal U$ is an open cover of $X$, there exists a subspace $A\subseteq X$ with property $P$ such that $X=St(A,\mathcal U)$. In this note, we construct a Tychonoff pseudocompact SCE-space which is not star Lindelöf, which gives a negative answer to a question of Rojas-Sánchez and Tamariz-Mascarúa.
References:
[1] Aiken L.P.: Star-covering properties: generalized $\Psi$-spaces, countability conditions, reflection. Topology Appl. 158 (2011), 1732–1737. DOI 10.1016/j.topol.2011.06.032 | MR 2812483 | Zbl 1223.54029
[2] Alas O.T., Junqueira L.R., Wilson R.G.: Countability and star covering properties. Topology Appl. 158 (2011), 620–626. DOI 10.1016/j.topol.2010.12.012 | MR 2765618 | Zbl 1226.54023
[3] Alas O.T., Junqueira L.R., van Mill J., Tkachuk V.V., Wilson R.G.: On the extent of star countable spaces. Cent. Eur. J. Math. 9 (2011), no 3, 603–615. DOI 10.2478/s11533-011-0018-y | MR 2784032 | Zbl 1246.54017
[4] van Douwen E.K., Reed G.M., Roscoe A.W., Tree I.J.: Star covering properties. Topology Appl. 39 (1991), 71–103. DOI 10.1016/0166-8641(91)90077-Y | MR 1103993 | Zbl 0743.54007
[5] Engelking R.: General Topology. revised and completed edition, Heldermann, Berlin, 1989. MR 1039321 | Zbl 0684.54001
[6] Matveev M.V.: A survey on star-covering properties. Topological Atlas preprint no. 330, 1998.
[7] van Mill J., Tkachuk V.V., Wilson R.G.: Classes defined by stars and neighborhood assignments. Topology Appl. 154 (2007), 2127–2134. DOI 10.1016/j.topol.2006.03.029 | MR 2324924
[8] Noble N.: Countably compact and pseudocompact products. Czechoslovak Math. J. 19(3) (1969), 390–397. MR 0248717 | Zbl 0184.47706
[9] Rojas-Sánchez A.D., Tamariz-Mascarúa Á.: Spaces with star countable extent. Comment. Math. Univ. Carolin. 57 (2016), no 3, 381–395. MR 3554518
Partner of
EuDML logo