Previous |  Up |  Next

Article

Keywords:
super Dunkl-Dirac operator; Stokes formula; Cauchy-Pompeiu integral formula; Morera's theorem; Painlevé theorem
Summary:
Using a distributional approach to integration in superspace, we investigate a Cauchy-Pompeiu integral formula in super Dunkl-Clifford analysis and several related results, such as Stokes formula, Morera's theorem and Painlevé theorem for super Dunkl-monogenic functions. These results are nice generalizations of well-known facts in complex analysis.
References:
[1] Bernardes, G., Cerejeiras, P., Kähler, U.: Fischer decomposition and Cauchy kernel for Dunkl-Dirac operators. Adv. Appl. Clifford Algebr. 19 (2009), 163-171. DOI 10.1007/s00006-009-0151-x | MR 2524663 | Zbl 1172.30020
[2] Cerejeiras, P., Kähler, U., Ren, G.: Clifford analysis for finite reflection groups. Complex Var. Elliptic Equ. 51 (2006), 487-495. DOI 10.1080/17476930500482499 | MR 2230262 | Zbl 1115.30053
[3] Coulembier, K., Bie, H. De, Sommen, F.: Integration in superspace using distribution theory. J. Phys. A, Math. Theor. 42 (2009), Article ID 395206, 23 pages. DOI 10.1088/1751-8113/42/39/395206 | MR 2539324 | Zbl 1187.58011
[4] Bie, H. De, Schepper, N. De: Clifford-Gegenbauer polynomials related to the Dunkl Dirac operator. Bull. Belg. Math. Soc.-Simon Stevin 18 (2011), 193-214. DOI 10.36045/bbms/1307452070 | MR 2847756 | Zbl 1227.30038
[5] Bie, H. De, Sommen, F.: Correct rules for Clifford calculus on superspace. Adv. Appl. Clifford Algebr. 17 (2007), 357-382. DOI 10.1007/s00006-007-0042-y | MR 2350585 | Zbl 1129.30034
[6] Bie, H. De, Sommen, F.: Spherical harmonics and integration in superspace. J. Phys. A, Math. Theor. 40 (2007), 7193-7212. DOI 10.1088/1751-8113/40/26/007 | MR 2344451 | Zbl 1143.30315
[7] Dunkl, C. F.: Differential-difference operators associated to reflection groups. Trans. Am. Math. Soc. 311 (1989), 167-183. DOI 10.2307/2001022 | MR 0951883 | Zbl 0652.33004
[8] Dunkl, C. F., Xu, Y.: Orthogonal Polynomials of Several Variables. Encyclopedia of Mathematics and Its Applications 81, Cambridge University Press, Cambridge (2001). DOI 10.1017/CBO9780511565717 | MR 1827871 | Zbl 0964.33001
[9] Fei, M. G.: Fundamental solutions of iterated Dunkl-Dirac operators and their applications. Acta Math. Sci. Ser. A, Chin. Ed. 33 (2013), 1052-1061 Chinese. MR 3184906 | Zbl 1313.33013
[10] Fei, M., Cerejeiras, P., Kähler, U.: Fueter's theorem and its generalizations in Dunkl-Clifford analysis. J. Phys. A, Math. Theor. 42 (2009), Article ID 395209, 15 pages. DOI 10.1088/1751-8113/42/39/395209 | MR 2539327 | Zbl 1230.30033
[11] Fei, M., Cerejeiras, P., Kähler, U.: Spherical Dunkl-monogenics and a factorization of the Dunkl-Laplacian. J. Phys. A, Math. Theor. 43 (2010), Article ID 445202, 14 pages. DOI 10.1088/1751-8113/43/44/445202 | MR 2733821 | Zbl 1203.30054
[12] Heckman, G. J.: Dunkl operators. Séminaire Bourbaki, Volume 1996/97. Exposés 820-834. Société Mathématique de France, Astérisque 245 (1997), 223-246. MR 1627113 | Zbl 0916.33012
[13] Humphreys, J. E.: Reflection Groups and Coxeter Groups. Cambridge Studies in Advanced Mathematics 29, Cambridge University Press, Cambridge (1990). DOI 10.1017/CBO9780511623646 | MR 1066460 | Zbl 0725.20028
[14] Ren, G.: Howe duality in Dunkl superspace. Sci. China, Math. 53 (2010), 3153-3162. DOI 10.1007/s11425-010-4063-y | MR 2746313 | Zbl 1213.30087
[15] Trimèche, K.: Paley-Wiener theorems for the Dunkl transform and Dunkl translation operators. Integral Transforms Spec. Funct. 13 (2002), 17-38. DOI 10.1080/10652460212888 | MR 1914125 | Zbl 1030.44004
[16] Diejen, J. F. Van, (eds.), L. Vinet: Calogero-Moser-Sutherland Models. Workshop, Centre de Recherches Mathématique, Montréal, 1997. CRM Series in Mathematical Physics, Springer, New York (2000). DOI 10.1007/978-1-4612-1206-5 | MR 1843558 | Zbl 0942.00063
[17] Yuan, H. F., Karachik, V. V.: Dunkl-Poisson equation and related equations in superspace. Math. Model. Anal. 20 (2015), 768-781. DOI 10.3846/13926292.2015.1112856 | MR 3427166
[18] Yuan, H., Qiao, Y., Yang, H.: Properties of $k$-monogenic functions and their relative functions in superspace. Adv. Math., Beijing 42 (2013), 233-242 Chinese. MR 3112909 | Zbl 1299.30132
[19] Yuan, H., Zhang, Z., Qiao, Y.: Polynomial Dirac operators in superspace. Adv. Appl. Clifford Algebr. 25 (2015), 755-769. DOI 10.1007/s00006-014-0524-7 | MR 3384860 | Zbl 1325.35008
Partner of
EuDML logo