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Abstract. Using a distributional approach to integration in superspace, we investigate
a Cauchy-Pompeiu integral formula in super Dunkl-Clifford analysis and several related
results, such as Stokes formula, Morera’s theorem and Painlevé theorem for super Dunkl-
monogenic functions. These results are nice generalizations of well-known facts in complex
analysis.
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1. INTRODUCTION

Dunkl operators (also called differential-difference operators), introduced by Dunkl
(see [7]), are invariant under a finite reflection group and are also pairwise commut-
ing. These operators not only provide a useful tool in the study of special functions
with root systems (see [8]), but also they are closely related to some particular rep-
resentations of degenerated affine Hecke algebras (see [16]) and integrable systems
of Calogero-Moser-Sutherland type (see [12]). In 2006, Cerejeiras, Kéhler and Ren
defined the Dunkl-Dirac operator (see [2]) and constructed the Stokes formula in Clif-
ford analysis by Dunkl transforms (see [15]). The theory of Dunkl-Clifford analysis
is further developed in [1], [10], [11], [14], [4] and [17]. In 2013, Fei investigated the
fundamental solutions to the Dunkl-Dirac equation, and also obtained the Cauchy
integral formula with a Dunkl-Cauchy kernel (see [9]).
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Recently, Sommen, De Bie and others have studied a superspace of dimension
(m,2n) in the frame of Clifford analysis (see [5], [6], [3]). Superspaces are spaces
equipped with both a set of commuting variables and a set of anti-commuting vari-
ables in order to describe the properties of bosons and fermions in quantum me-
chanics. In [5], they defined the super Dirac operator (i.e., the Dirac operator in
superspace) by the Dirac operator in R™. In [3], using a distributional approach
to integration in superspace, they investigated some properties of the super Dirac
operator, such as Stokes formula, Cauchy integral formula and Morera’s theorem.
Then, we investigated Cauchy-Pompeiu formulas for iterates of Dirac operators and
polynomial Dirac operators in superspace (see [18], [19]). Inspired by the above-
mentioned results, we want to develop further these ideas for the super Dunkl-Dirac
operator.

The paper is organized as follows. In Section 2 we recall the necessary results
on the super Dunkl-Clifford analysis (i.e., Dunkl-Clifford analysis in superspace). In
Section 3, inspired by De Bie et al., we construct fundamental solutions for the super
Dunkl-Laplace and super Dunkl-Dirac operators by the fundamental solutions of the
natural powers of the Laplace operator in Dunkl-Clifford analysis. In Section 4, using
a distributional approach to integration in superspace, combined with the Stokes
formula in Dunkl-Clifford analysis, we consider the Stokes formula in super Dunkl-
Clifford analysis. Applying this formula, we get the Cauchy-Pompeiu formula for
the super Dunkl-Dirac operator and Morera’s theorem for super Dunkl-monogenic
functions. Furthermore, using Morera’s theorem, we obtain the Painlevé theorem for
super Dunkl-monogenic functions.

2. PRELIMINARIES

2.1. Dunkl-Clifford analysis in R™. Denote by (-,-) the standard Euclidean
scalar product in R™ and by |x| = (z,z)'/? the associated norm. For o € R™ \ {0},
the reflection o, in the hyperplane orthogonal to « is given by

(o, 7)

|of?

O =2 —2 a, x€R™.

A finite set R € R™\ {0} is called a root system if «RNR = {a, —a} and 6,R =R
for all & € R. Each root system can be written as a disjoint union R = R4 U (—Ry),
where R} and —R are separated by a hyperplane through the origin. The subgroup
G C O(m) generated by the reflections {o,: a € R} is called the finite reflection
group associated with R. For more information on finite reflection groups we refer
the reader to [13].
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A multiplicity function x on the root system R is a G-invariant function x: R — C,
ie., k(o) = k(ga) for all g € G. We will denote k() by ko. For abbreviation, we

Y= =Y Ka

acR4

introduce the index

Moreover, let h,(z) denote the weight function
= I Kewz)l™=.
a€RL

In this paper, we will assume that s, > 0 and v, > 0.
For each subsystem R and multiplicity function x, we have the Dunkl operators

lo s .
+Z/<;a ga)ai, 1=1,...,m,
acR4

T f(z )*

83:1

for f € C*(R™). An important consequence is that the operators T; are mutually
commutating, that is, T;1; = T;T;.

We consider a function f: R™ — R ,,. Hereby Ry ,, denotes the Clifford algebra
over R™ generated by {ey,ea,...,en} satisfying the anti—cornmutation relationship

e;ej+eje; = —20;5, where d;; is the Kronecker symbol. By z = Z x;e; we denote the
so-called vector variable. A Dunkl- Dlrac operator in R™ for the correspondlng reflec-
tion group G is defined as Dj, = Z e;T;, where T; are Dunkl operators. Functions

i=1
belonging to the kernel of the Dunkl-Dirac operator D are called Dunkl-monogenic
functions.

The classical Dunkl Laplacian is defined as

Ap=-Dp=> T?
i=1

When x = 0, the Dunkl Laplacian Ay, is just the ordinary Laplacian. Functions
belonging to the kernel of the Dunkl Laplacian Aj are called Dunkl-harmonic func-
tions.

2.2. Dunkl-Clifford analysis in R™?”, On a superspace of dimension (m, 2n),
we have m commuting (or bosonic) variables x1, ..., z,, and 2n anti-commuting (or
fermionic) variables X1, ..., &2, subject to

Tilj = Tjly,
iy = —X;24,
J?ij)j = ﬁ:ja:i.
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Furthermore, we have the Clifford algebra generators ey, ..., e, and the symplectic
Clifford algebra generators é1, ..., éa,. They obey the following rules:

ejer + epe; = _25jk;
éajlar — €aea; = 0,
€2j—1€2k—1 — €ap—1€25—1 = 0,

€212k — €2k€2i—1 = Ojk,

ejék + ékej =0.
Taking the above relations into account, we study the superspace by the real algebra
Alg(xzv ei;x\ja é]) = Alg(xmftj) ® Alg(ezv éj)v i = ]-7 R ] = ]-a ceey 2na

which is the tensor product of Alg(x;, ;) and Alg(e;, ¢;). The algebra Alg(x;, ;) is
called a scalar algebra, denoted by P, and the algebra Alg(e;, &;) is a Clifford algebra,
denoted by Cy,|2,,- Moreover, the elements of both these algebras can commute with
each other. When n = 0, we have that P ® C,j0 = R[z1,..., 2] ® Rom, where
Rl[z1,...,2m] is generated by the commuting variables x;. In the case Cp,jo = Ro,m,
Ro,m is the standard orthogonal Clifford algebra. When m = 0, we have that P ®
Coj2n = A2n ® Way, with Ag, being the Grassmann algebra generated by 2;. In the
case Cojan = Wapn, Way, is the Weyl algebra generated by ¢€;.
We define the super vector variable = as follows:

r=z+,
m 2n
where x = Y zie; and 2 = Zje;. By direct calculation, we obtain the square of z:
i=1 =1
n m
22 :f +g2, where 2° = E 29125 and 22 =— E x;
j=1 i=1
m
Note that 22 = — Y 2? is the norm squared of a vector in Euclidean space.

i=1
Thus, we define a more general function space as

Ck (Q) ® A2n ® Cm\an

where C*(£) denotes space of k-times continuously differentiable real-valued func-
tions defined in some domain 2 C R™. We use the notation

CH(Q), 1, = CF(Q) ® Agy.

m|2n

798



The super Dunkl-Dirac operator is defined to be

m n
D=-D,+ Dy = —Z e T; + 22((\32]'8532]._1 - égj_lamj),

i=1 j=1

where D), is the bosonic Dunkl-Dirac operator and Dy is the fermionic Dunkl-Dirac
operator.
If we let D act on =, we see that

M = %sz —n+ 5+,
where M is the Dunkl version of the super-dimension in contrast to the non-Dunkl
case of the super-dimension in [6]. The numerical parameter M is regarded as the
ground level energy in physics.
As usual, functions belonging to the kernel of the super Dunkl-Dirac operator are
called super Dunkl-monogenic functions.
The square of the left super Dunkl-Dirac operator is the super Dunkl-Laplace
operator
m n
A=D?=-Dp+A0p==Y T?+4Y sy 0,
i=1 j=1
where Ay, is the Dunkl-Laplace operator and Ay is the fermionic Dunkl-Laplace
operator.
Functions belonging to the kernel of the super Dunkl-Laplace operator are called
super Dunkl-harmonic functions.

2.3. Integration in Dunkl superspace. The integration in Dunkl superspace
is defined by

L= rwve [ - [ [ ke -awve,

where dV (z) = dxy ... dx,, is the usual Lebesgue measure in R™, and the integration

/ c=1 "0y, - Os,-
B

used on A?" is the so-called Berezin integration.
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3. FUNDAMENTAL SOLUTIONS FOR THE DUNKL-LAPLACE
AND DUNKL-DIRAC OPERATORS IN SUPERSPACE

We introduce the Mehta-type constant

-1
o= ([ elePri@ave) .
which is known for all Coxeter groups W (see [8]).

Lemma 3.1 ([9]). If 0 < s <+ d/2, then the functions K;nlo(g) given by

(=D*ep,T(y+d/2 —s) 1
45T(s) [|z||2+d=2s

KM(z) =

are fundamental solutions for the natural powers of the Dunkl-Laplace operator Ay,.

Concerning the refinement to Clifford analysis, we clearly have that Dthnlo(g)
are fundamental solutions for the natural powers of the Dunkl-Dirac operator Dj,.

Lemma 3.2 ([9]). Forl € N, we denote by Klm‘o(g) the fundamental solutions
for the natural powers of the Dunkl-Dirac operator Dj,.
For 2v +m odd,

z
Cﬁ,m,lw, [ odd,

K" (2) =

B z
cﬁ,m,lW, [ even.

For 2v + m even,

X
CHMJW7 loddandl < 2v+m—1,
Zz
c,.;,mJWv l even and | < 2v + m,

z
(cr,m, log [z + C;,m,l)Wa loddandl>2y+m—1,

P4
][>+t

(cr,mlogllzl| + ¢ ) l even and | > 27y + m.

From the above lemmas, we have the fundamental solution for the super Dunkl-
Laplace operator as follows.
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Theorem 3.3. The function Kgml%(x) given by

n

m|2 z : 0 —
l{ ‘ TL(]:) n (n k)' F.’lel 2n Qk’

with K;’,Z‘EQ as in Lemma 3.1, is a fundamental solution for the operator A.

Proof. From the definition of the super Dunkl-Laplace operator, we have

. 4k 0 o e 4RE! 0 o
Ax Z WK;ZLQEQ” 2k _ (—Ah + Af)TE Z WK;ZLQEQ” 2k
! Pt !

_ n & 4F k! m|0 < 2n—2k
=T Z (—An) Kool

k=0 (n —k)!
n—1
4k E)
- (n —kk;)l Kgllclfz@n — 2k)(—2k — 2)x2n k2
k=0 :
bikd o . n 4kkl N .
— §($)m(§)2 + ﬁ ;’;‘Ogm 2k

4k (k- 1) m|0 2n—2k
Y 7)|K2k’ (2n — 2k + 2)(—2k)a*"~
k=1 ’

n k k—1(p. _
—(2)*" + " Z((:_k]i)! + ?n —(llj+ 11)); (2n — 2k + 2)(—21@))[(;@0@2"*2’“

where §(z) = §(z)n"n!" 2" is the super distribution in R™?". Thus, we completed
the proof. O

Note that AK" "2"(33) = §(x). It follows that a fundamental solution for the su-

m|2n

per Dunkl-Dirac operator D is given by DK, '“"(z). This leads to the following
statement.

Theorem 3.4. The function Klml%(a:) given by

n—1

Km|2n ) 2 4% Km\o \2n—2k—1 n o 4F k! Km‘o N2n—2k
1 (@) =m Zm 242 L -T Zi(n—k—l)! 241 L ;
k=0 k=0

. 0 . 0 0
with K;;l_i_Q as in Lemma 3.1 and K;’;‘_’_l = D;LK;;‘_’_

mental solution for the super Dunkl-Dirac operator D.

o as in Lemma 3.2, is a funda-
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4. FUNDAMENTAL THEOREMS IN SUPER DUNKL-CLIFFORD ANALYSIS

4.1. Stokes formula in super Dunkl-Clifford analysis. In [2], we see that
the Stokes formula in Dunkl-Clifford analysis reads as follows.

Lemma 4.1 ([2]). For p(z),¥(z) € C*®(Q) ® Ro,m,

(4.1) /Q (o(@) D) (@) + o) (Db (@) 12 (z) AV (z) = /6 (@)1 (2) do(@)b (),

Q

with the vector-valued surface element do, = Y (—1)%e; dzy .. Ex\l ...dz,, and the
i=1
volume element dV (z) = dx1 ... dx,,.

If we consider a distribution « with compact support and if f(z), g(z) €
C*(R™) ® Ro,m, then

(12) [ (EDrag + 1D(@)g + Fa(Drgh(z) AV (z) =0,

Thus, we have

@) [ [(D0eg+ faD2@ V@) = - [ Duah ) v @)

which is the most general form of the Stokes formula in Dunkl-Clifford analysis.

Lemma 4.2 (Fermionic Stokes formula, [3]). For f,g € Ay, @ Wh,, and o € Agy,
the following holds:

(14) - [ aowg+ [ fateso) = [ rladns
B B B
Using Lemmas 4.1 and 4.2, we obtain the Stokes formula in super Dunkl-Clifford
analysis as follows.

Theorem 4.3. Let Q C R™. If f,g € C*(Q)m)2n ® Cpnj2n, then

@s) [ aDl+ faliE@avie = - [ faDghiavi)

Rm™[2n

for o € R[z1,...,Tm] ® A2, a distribution with compact support ¥ C €.

Proof. For a = By with 8 € R[z1,...,zy] and v € Ag,, we have (4.5) from
(4.3) and Lemma 4.2. O
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Corollary 4.4. Let ¥ be a compact oriented differentiable m-dimensional mani-
fold with smooth boundary 0%. If f,g € Cl(E)m|2n ® Cpnj2n, then

(4.6) / /B (fBD)g + fB(Dg)h2(z) AV (z)

_/BE/Bfﬁhi(&)d<7£g+/E/Bf(/J’Df)ghi@)dv@)7

where B € Ag,.

Proof. This is a special case of Theorem 4.3 for o = H(v)8, with v(z) > 0
ifreX viz) <0if z € R™\ X. It is easy to see that (4 6) holds by Lemmas 4.1
and 4.2. (]

4.2. A Cauchy-Pompeiu formula for the super Dunkl-Dirac operator.
First we introduce the translation operator (see [15])

(4.7) Ty f (@) = (Va)y (Vi) [(Va) T (F) (@ + )], 2,y € R™,

where V}, denotes the Dunkl-intertwining operator, i.e.,

d
D;Vi = Vig—
J

and V,(1) = 1. Then, using this translation operator we have the Dunkl-convolution
defined by

(1) fro0) = [ mf(-o)gle)h () da.

Theorem 4.5. Let @ C R™ and let Q be a compact oriented differentiable
m-dimensional manifold with smooth boundary 02. Let f(x) € C*(Q)mj2n @ Cpaj2n
and let the function K m|2n( ) be the fundamental solution for the super Dunkl-Dirac
operator D. Then

(4.9) /8 ) / r K2~ o)k (2) do f ()

N R CI O (x)dw:c)—{o’ LRI
B B _f(y)a QEQ
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Proof. ForyeR™ \ Q, it follows by Corollary 4.4 for 3 = 1 that

/m/BTyKlml%(—x)hi(z) doyf ()
- [/ / [TyK{n‘Qn(—x)D]f(a;)hi@) dv(z)

//V@mm )[Df (2)]hE () dV (z)

//9@ P (—a) (D f (2)]h2 () AV (a).

Thus, we have (4.9) for y € R™\ Q. For y € Q,

/m/ 7, K72 (~2)hi (2) dog f (x)
U:/%KW% 2)D]f (2)h;(z) AV (z)

‘//@me DS ()]h @mwg]
_//ﬁw@Mﬂ //;ymm DS v
//”M% )[Df(2)|h}(z) dV (z).

This implies that (4.9) holds for y € Q. O

4.3. Morera’s theorem for super Dunkl-monogenic functions. Applying
the Stokes formula in Dunkl-Clifford analysis, we obtain Morera’s theorem for Dunkl-
monogenic functions as follows.

Lemma 4.6. A function f is left Dunkl-monogenic in the open set 0 C R™ if
and only if f is continuous in 2 and

(4.10) B2 () dosf =0
oI

for all intervals I C Q.

Furthermore, we have the following lemma, which is an extension of Lemma 4.6.
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Lemma 4.7. Let I C Q C R™. If f,g € C*(Q) ® Ry, and

(4.11) h2(z) dof = / gh2 (z) AV (z),
oI I

then Dy f = g in Q.
Proof. Asge CYQ)®Rq,m, there exists ¢ € C'(Q)@Ro,, such that g = Dy p.
Applying Lemma 4.1 and (4.11), we obtain

2(z)dog[f — o] = 2(z)do,f — 2(z)dV(z) =
/Mm_)d,[f 7l /alhmd,f /IDhsom)dvu

It follows by Lemma 4.6 that f — ¢ is left Dunkl-monogenic. Thus we have
Dy f = Dnep. O

In order to obtain our main result in this section, we need the following lemma.

Lemma 4.8 ([3]). Let p € Ag,. If

(4.12) /qu _0

for any q € Ag,,, then p = 0.

Theorem 4.9. Let Q C R™. A function f € C°(Q)j20, ® Cinj2n is super Dunkl-
monogenic in  if and only if

(4.13) | [ ar@arct~ [ [ @ppmi@avie) -

for all intervals I C  and o € As,.

Proof. Suppose that f is super Dunkl-monogenic in 2. Then (4.13) holds by
Corollary 4.4. To the contrary, we suppose that f € CO(Q)m|2n ® Cpnj2n- Then

/BI/B ahi(z) doyf = /1 /B (aDy)fhii(z) AV (z)

for all intervals I C 2 and o € Ag,. Using Lemma 4.2, we get

//anfh2 )dV (z // a(Dy f)hi(z) AV (z).

Thus, we have

(4.14) | [ amtwaos = [ [ aw;nmzieav.
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If (4.14) holds for every «, then it follows by Lemma 4.8 that

(4.15) /M hi(z)do,f = /Ifohi(g) dV (z).

Inspired by De Bie ([6]), we have the full decomposition

2n—2k
0

I=2.
k=0

N
E kg M7,
!

j=

where M, ,lc’j is the space of spherical monogenics of degree k depending on the con-
stants [, j. Thus, (4.15) can be rewritten as

(4.16) h2(z)doy fi—1 k1 = /fj,k,lhi@) dVi(z), j=1,...,2n—2k, VI,
oI I

and

(4.17) hi (2) dog fon—okky =0, VI.
or

Formula (4.17) implies that fo,,—o x is Dunkl-monogenic in €2, and also implies that
fon—2k.k1 € C(Q) @ Rg . Now we proceed by induction (from j = 2n — 2k — 1 to
j =0). Suppose that Dy, fj k1 = fj+1,k,1 and f; i, is Dunkl-polyharmonic in Q. Thus,
using Lemma 4.7 and (4.16), we have Dy fj_1,k,1 = fjku. It follows that f;_ 1z, is
Dunkl-polyharmonic in €. Therefore, we obtain that f is differentiable and that
n 2n—2k—1 n 2n—2k
Df==> > &> MIDufisa+> D > &M k=0,
k=0 j=0 1

k=0 j=1 1

which implies that f is super Dunkl-monogenic in €. O

4.4. Painlevé theorem for super Dunkl-monogenic functions.

Theorem 4.10. Let Q be open in R™ and € be open in R™~! such that
QNR™ = Q. Let f € CO(Q)m|2n ® Cnj2n- If f(x) is super Dunkl-monogenic in
Q\ Q' and moreover continuous in ), then f(z) is super Dunkl-monogenic in ).

Proof. Since f(x) is super Dunkl-monogenic in Q\ ', it follows by Theorem 4.9
that

(4.18) || ant@aes = [ [ @ppsiavie o
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for any closed interval I C Q\ Q. Suppose that a closed interval I has the following
form: I =1' x [0,ao], where I’ is a closed interval contained in €'
For ¢ € [0, ag], we put I. = I’ x [0,]. Then we have

(4.19) / ) | ari@ao.s - [ 5 | @Dpshi@avia) <o

Due to linearity it suffices to prove this theorem for f(x) = f1(z)f2(&), where f1
contains only commuting variables and f> contains only anti-commuting variables.

Then by the continuity of f, we have

/815/Bahz(§) dogf = /Ba/ma h2(z) dog fi () f2(2)

_ /Ba/,[fl(ew') — [1(0+2) 12 () ds fa(2)

* /azf x[0,€] /B(an)fhK@) -

where ds = (—1)""le;dzy A ... AdZ; ... Aday,, i = 1,2,...,m. It follows that

lim/ /ahi(g)daxf:/ /ahi(g)daxf,
e—=0" Jor.JB - ar'J B -
1im// (aDy) fhi(z)dV(z // (aDy) fhi(z)dV (z).
e—0t ’

Thus, we have

ao) [ [ ard@ans - [ [ @opmieavie -

It is easy to see that (4.20) holds for all I’ C ). Therefore, we have the result from
Theorem 4.9. g

and

Acknowledgement. The author would like to thank Minggang Fei for helpful
discussions on Dunkl-Clifford analysis.
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