Previous |  Up |  Next

Article

Keywords:
Menger property; Menger game; $\sigma$-compact spaces; limited information strategies
Summary:
As shown by Telgársky and Scheepers, winning strategies in the Menger game characterize $\sigma$-compactness amongst metrizable spaces. This is improved by showing that winning Markov strategies in the Menger game characterize $\sigma$-compactness amongst regular spaces, and that winning strategies may be improved to winning Markov strategies in second-countable spaces. An investigation of 2-Markov strategies introduces a new topological property between $\sigma$-compact and Menger spaces.
References:
[1] Arhangel'skii A.V.: From classic topological invariants to relative topological properties. Sci. Math. Jpn. 24 (2002), no. 1, 153–201. MR 1885790 | Zbl 0994.54024
[2] Hurewicz W.: Über eine Verallgemeinerung des Borelschen Theorems. Math. Z. 24 (1926), no. 1, 401–421. DOI 10.1007/BF01216792 | MR 1544773
[3] Kunen K.: Set Theory. An Introduction to Independence Proofs. Studies in Logic and the Foundations of Mathematics, 102, North-Holland Publishing Co., Amsterdam-New York, 1980. MR 0597342 | Zbl 0534.03026
[4] Scheepers M.: Concerning $n$-tactics in the countable-finite game. J. Symbolic Logic 3 (1991), no. 3, 786–794. MR 1129143 | Zbl 0745.03039
[5] Scheepers M.: A direct proof of a theorem of Telgársky. Proc. Amer. Math. Soc. 123 (1995), no. 11, 3483–3485. MR 1273523 | Zbl 0842.90143
[6] Scheepers M.: Combinatorics of open covers. I. Ramsey theory. Topology Appl. 69 (1996), no. 1, 31–62. DOI 10.1016/0166-8641(95)00067-4 | MR 1378387 | Zbl 0848.54018
[7] Steen L.A., Seebach J.A.: Counterexamples in topology. Dover Publications, Inc., Mineola, NY, 1995; reprint of the second (1978) edition. MR 1382863 | Zbl 0386.54001
[8] Telgársky R.: On games of Topsøe. Math. Scand. 54 (1984), no. 1, 170–176. DOI 10.7146/math.scand.a-12050 | MR 0753073 | Zbl 0525.54016
Partner of
EuDML logo