Previous |  Up |  Next

Article

Keywords:
Hattori space; Čech-complete space; Čech-analytic space; neighborhood assignment; Sorgenfrey line; scattered set; weakly separated space
Summary:
For a subset $A$ of the real line $\mathbb R$, Hattori space $H(A)$ is a topological space whose underlying point set is the reals $\mathbb R$ and whose topology is defined as follows: points from $A$ are given the usual Euclidean neighborhoods while remaining points are given the neighborhoods of the Sorgenfrey line. In this paper, among other things, we give conditions on $A$ which are sufficient and necessary for $H(A)$ to be respectively almost Čech-complete, Čech-complete, quasicomplete, Čech-analytic and weakly separated (in Tkacenko sense). Some of these results solve questions raised by V.A. Chatyrko and Y. Hattori.
References:
[1] Alexandroff P., Urysohn P.: Uber nulldimensionale Punktmengen. Math. Ann. 98 (1928), 89–106. DOI 10.1007/BF01451582 | MR 1512393
[2] Bennett H.R., Lutzer D.J.: Generalized ordered spaces with capacities. Pacific J. Math. 112 (1984), no. 1, 11–19. DOI 10.2140/pjm.1984.112.11 | MR 0739137 | Zbl 0541.54038
[3] Chatyrko V.A., Hattori Y.: A poset of topologies on the set of real numbers. Comment. Math. Univ. Carolin. 54 (2013), no. 2, 189–196. MR 3067703 | Zbl 1289.54020
[4] Creede G.D.: Concerning semistratifiable spaces. Pacific J. Math. 32 (1970), 47–54. DOI 10.2140/pjm.1970.32.47 | MR 0254799
[5] van Douwen E.K.: Closed copies of the rationals. Comment. Math. Univ. Carolin. 28 (1987), no. 1, 137–139. MR 0889775 | Zbl 0614.54028
[6] van Douwen E.K.: Retracts of the Sorgenfrey line. Compositio Math. 38 (1979), no. 2, 155–161. MR 0528838 | Zbl 0408.54004
[7] Engelking R.: General Topology. Heldermann Verlag, Berlin, 1989. MR 1039321 | Zbl 0684.54001
[8] Faber M.J.: Metrizability in Generalized Ordered Spaces. Math. Centre Tracts, 53, Math. Centre, Amsterdam, 1974. MR 0418053 | Zbl 0282.54017
[9] Fremlin D.H.: Čech-analytic spaces. Note, December 1980.
[10] Gittings R.F.: Concerning quasi-complete spaces. General Topology Appl. 6 (1976), no. 1, 73–89. DOI 10.1016/0016-660X(76)90010-6 | MR 0391033 | Zbl 0323.54025
[11] Hattori Y.: Order and topological structures of posets of the formal balls on metric spaces. Mem. Fac. Sci. Eng. Shimane Univ. Ser. B Math. Sci. 43 (2010), 13–26. MR 2650132 | Zbl 1196.54048
[12] Kulesza J.: Results on spaces between the Sorgenfrey and usual topologies on $\mathbb R$. to appear in Topology Appl.
[13] van Mill J.: Sierpinski's technique and subsets of $\mathbb R$. Topology Appl. 44 (1992), no. 1-3, 241–261. MR 1173263
[14] Ščepin E.: On topological products, groups, and a new class of spaces more general than metric spaces. Soviet Math. Dokl. 17 (1976), 152-155. MR 0405350
[15] Tkacenko M.G.: Chains and cardinals. Dokl. Akad. Nauk SSSR 239 (1978), no. 3, 546–549 (in Russian); English translation: Soviet Math. Dokl. 19 (1978), no. 2, 382–385. MR 0500798
Partner of
EuDML logo