[1] Andreotti, A., Hill, C. D.:
E. E. Levi convexity and the Hans Lewy problem I: Reduction to vanishing theorems. Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 26 (1972), 325-363.
MR 0460725 |
Zbl 0256.32007
[2] Andreotti, A., Hill, C. D.:
E. E. Levi convexity and the Hans Lewy problem II: Vanishing theorems. Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 26 (1972), 747-806.
MR 0477150 |
Zbl 0283.32013
[7] Khidr, S., Barkatou, M.-Y.:
Global solutions with $\mathcal C^k$-estimates for $\bar\partial$-equations on $q$-concave intersections. Electron. J. Differ. Equ. 2013 (2013), Paper No. 62, 10 pages.
MR 3040639 |
Zbl 1287.32002
[8] Laurent-Thiébaut, C., Leiterer, J.:
The Andreotti-Vesentini separation theorem with $C^k$ estimates and extension of CR-forms. Several Complex Variables, Proc. Mittag-Leffler Inst., Stockholm, 1987/1988 Math. Notes 38, Princeton Univ. Press, Princeton (1993), 416-439.
MR 1207871 |
Zbl 0776.32012
[11] Michel, J., Perotti, A.:
$C^k$-regularity for the $\overline\partial$-equation on strictly pseudoconvex domains with piecewise smooth boundaries. Math. Z. 203 (1990), 415-427.
DOI 10.1007/BF02570747 |
MR 1038709 |
Zbl 0673.32019
[14] Sambou, S.:
Résolution du $\overline\partial$ pour les courants prolongeables définis dans un anneau. Ann. Fac. Sci. Toulouse, VI. Sér., Math. 11 (2002), 105-129 French.
DOI 10.5802/afst.1020 |
MR 1986385 |
Zbl 1080.32502