Previous |  Up |  Next

Article

Keywords:
weak Lebesgue space; Triebel-Lizorkin space; equivalent norm; maximal function; atom
Summary:
Recently, the weak Triebel-Lizorkin space was introduced by Grafakos and He, which includes the standard Triebel-Lizorkin space as a subset. The latter has a wide applications in aspects of analysis. In this paper, the authors firstly give equivalent quasi-norms of weak Triebel-Lizorkin spaces in terms of Peetre's maximal functions. As an application of those equivalent quasi-norms, an atomic decomposition of weak Triebel-Lizorkin spaces is given.
References:
[1] Almeida, A., Hästö, P.: Besov spaces with variable smoothness and integrability. J. Funct. Anal. 258 (2010), 1628-1655. DOI 10.1016/j.jfa.2009.09.012 | MR 2566313 | Zbl 1194.46045
[2] Diening, L., Hästö, P., Roudenko, S.: Function spaces of variable smoothness and integrability. J. Funct. Anal. 256 (2009), 1731-1768. DOI 10.1016/j.jfa.2009.01.017 | MR 2498558 | Zbl 1179.46028
[3] Drihem, D.: Some embeddings and equivalent norms of the $\mathcal L^{\lambda,s}_{p,q}$ spaces. Funct. Approximatio, Comment. Math. 41 (2009), 15-40. DOI 10.7169/facm/1254330157 | MR 2568794 | Zbl 1188.46020
[4] Drihem, D.: Characterizations of Besov-type and Triebel-Lizorkin-type spaces by differences. J. Funct. Spaces Appl. 2012 (2012), Article ID 328908, 24 pages. DOI 10.1155/2012/328908 | MR 2873709 | Zbl 1242.46038
[5] Drihem, D.: Atomic decomposition of Besov-type and Triebel-Lizorkin-type spaces. Sci. China, Math. 56 (2013), 1073-1086. DOI 10.1007/s11425-012-4425-8 | MR 3047054 | Zbl 1273.46024
[6] Frazier, M., Jawerth, B.: Decomposition of Besov spaces. Indiana Univ. Math. J. 34 (1985), 777-799. DOI 10.1512/iumj.1985.34.34041 | MR 0808825 | Zbl 0551.46018
[7] Frazier, M., Jawerth, B.: A discrete transform and decompositions of distribution spaces. J. Funct. Anal. 93 (1990), 34-170. DOI 10.1016/0022-1236(90)90137-A | MR 1070037 | Zbl 0716.46031
[8] Frazier, M., Jawerth, B., Weiss, G.: Littlewood-Paley Theory and the Study of Function Spaces. CBMS Regional Conference Series in Mathematics 79, American Mathematical Society, Providence (1991). DOI 10.1090/cbms/079 | MR 1107300 | Zbl 0757.42006
[9] Grafakos, L., He, D.: Weak Hardy spaces. Some Topics in Harmonic Analysis and Applications Advanced Lectures in Mathematics 34, International Press, Higher Education Press, Beijing 177-202 J. Li et al. (2016). MR 3525560 | Zbl 1345.42026
[10] He, D.: Square function characterization of weak Hardy spaces. J. Fourier Anal. Appl. 20 (2014), 1083-1110. DOI 10.1007/s00041-014-9346-1 | MR 3254613 | Zbl 1309.42027
[11] Kempka, H.: 2-microlocal Besov and Triebel-Lizorkin spaces of variable integrability. Rev. Mat. Complut. 22 (2009), 227-251. DOI 10.5209/rev_REMA.2009.v22.n1.16353 | MR 2499334 | Zbl 1166.42011
[12] Kempka, H.: Atomic, molecular and wavelet decomposition of 2-microlocal Besov and Triebel-Lizorkin spaces with variable integrability. Funct. Approximatio, Comment. Math. 43 (2010), 171-208. DOI 10.7169/facm/1291903396 | MR 2767169 | Zbl 1214.46020
[13] Kyriazis, G.: Decomposition systems for function spaces. Stud. Math. 157 (2003), 133-169. DOI 10.4064/sm157-2-3 | MR 1981430 | Zbl 1050.42027
[14] Peetre, J.: On spaces of Triebel-Lizorkin type. Ark. Mat. 13 (1975), 123-130. DOI 10.1007/BF02386201 | MR 0380394 | Zbl 0302.46021
[15] Rychkov, V. S.: On a theorem of Bui, Paluszyński, and Taibleson. Proc. Steklov Inst. Math. 227 (1999), 280-292 translation from Tr. Mat. Inst. Steklova 227 1999 286-298. MR 1784322 | Zbl 0979.46019
[16] Sawano, Y., Yang, D., Yuan, W.: New applications of Besov-type and Triebel-Lizorkin-type spaces. J. Math. Anal. Appl. 363 (2010), 73-85. DOI 10.1016/j.jmaa.2009.08.002 | MR 2559042 | Zbl 1185.42022
[17] Stein, E. M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton Mathematical Series 32, Princeton University Press, Princeton (1971). MR 0304972 | Zbl 0232.42007
[18] Triebel, H.: Theory of Function Spaces. Monographs in Mathematics 78, Birkhäuser, Basel (1983). DOI 10.1007/978-3-0346-0416-1 | MR 0781540 | Zbl 0546.46027
[19] Triebel, H.: Theory of Function Spaces II. Monographs in Mathematics 84, Birkhäuser, Basel (1992). DOI 10.1007/978-3-0346-0419-2 | MR 1163193 | Zbl 0763.46025
[20] Triebel, H.: Fractals and Spectra: Related to Fourier Analysis and Function Spaces. Monographs in Mathematics 91, Birkhäuser, Basel (1997). DOI 10.1007/978-3-0348-0034-1 | MR 1484417 | Zbl 0898.46030
[21] Triebel, H.: Theory of Function Spaces III. Monographs in Mathematics 100, Birkhäuser, Basel (2006). DOI 10.1007/3-7643-7582-5 | MR 2250142 | Zbl 1104.46001
[22] Triebel, H.: Local Function Spaces, Heat and Navier-Stokes Equations. EMS Tracts in Mathematics 20, European Mathematical Society, Zürich (2013). DOI 10.4171/123 | MR 3086433 | Zbl 1280.46002
[23] Triebel, H.: Hybrid Function Spaces, Heat and Navier-Stokes Equations. EMS Tracts in Mathematics 24, European Mathematical Society, Zürich (2015). DOI 10.4171/150 | MR 3308920 | Zbl 1330.46003
[24] Triebel, H.: Tempered Homogeneous Function Spaces. EMS Series of Lectures in Mathematics, European Mathematical Society, Zürich (2015). DOI 10.4171/155 | MR 3409094 | Zbl 1336.46004
[25] Ullrich, T.: Continuous characterizations of Besov-Lizorkin-Triebel spaces and new interpretations as coorbits. J. Funct. Spaces Appl. 2012 (2012), Article ID 163213, 47 pages. DOI 10.1155/2012/163213 | MR 2898467 | Zbl 1246.46036
[26] Xiao, J.: Holomorphic $Q$ Classes. Lecture Notes in Mathematics 1767, Springer, Berlin (2001). DOI 10.1007/b87877 | MR 1869752 | Zbl 0983.30001
[27] Xiao, J.: Geometric $Q_p$ Functions. Frontiers in Mathematics, Birkhäuser, Basel (2006). DOI 10.1007/978-3-7643-7763-2 | MR 2257688 | Zbl 1104.30036
[28] Xu, J.: Variable Besov and Triebel-Lizorkin spaces. Ann. Acad. Sci. Fenn., Math. 33 (2008), 511-522. MR 2431378 | Zbl 1160.46025
[29] Yang, D., Yuan, W.: A new class of function spaces connecting Triebel-Lizorkin spaces and $Q$ spaces. J. Funct. Anal. 255 (2008), 2760-2809. DOI 10.1016/j.jfa.2008.09.005 | MR 2464191 | Zbl 1169.46016
[30] Yang, D., Yuan, W.: Characterizations of Besov-type and Triebel-Lizorkin-type spaces via maximal functions and local means. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 73 (2010), 3805-3820. DOI 10.1016/j.na.2010.08.006 | MR 2728556 | Zbl 1225.46033
[31] Yang, D., Yuan, W.: New Besov-type spaces and Triebel-Lizorkin-type spaces including $Q$ spaces. Math. Z. 265 (2010), 451-480. DOI 10.1007/s00209-009-0524-9 | MR 2609320 | Zbl 1191.42011
[32] Yuan, W., Sickel, W., Yang, D.: Morrey and Campanato Meet Besov, Lizorkin and Triebel. Lecture Notes in Mathematics 2005, Springer, Berlin (2010). DOI 10.1007/978-3-642-14606-0 | MR 2683024 | Zbl 1207.46002
Partner of
EuDML logo