Previous |  Up |  Next

Article

Keywords:
set of the numbers of elements of the same order; prime graph
Summary:
Let $G$ be a group and $\omega (G)$ be the set of element orders of $G$. Let $k\in \omega (G)$ and $m_k(G)$ be the number of elements of order $k$ in $G$. Let nse$(G) = \{m_k(G) \colon k \in \omega (G)\}$. Assume $r$ is a prime number and let $G$ be a group such that nse$(G)=$ nse$(S_r)$, where $S_r$ is the symmetric group of degree $r$. In this paper we prove that $G\cong S_r$, if $r$ divides the order of $G$ and $r^2$ does not divide it. To get the conclusion we make use of some well-known results on the prime graphs of finite simple groups and their components.
References:
[1] Ahanjideh, N., Asadian, B.: NSE characterization of some alternating groups. J. Algebra Appl. 14 (2015), Article ID 1550012, 14 pages. DOI 10.1142/S0219498815500127 | MR 3270051 | Zbl 1320.20016
[2] Asboei, A. K.: A new characterization of PGL$(2,p)$. J. Algebra Appl. 12 (2013), Article ID 1350040, 5 pages. DOI 10.1142/S0219498813500400 | MR 3063479 | Zbl 1278.20013
[3] Asboei, A. K., Amiri, S. S. S., Iranmanesh, A., Tehranian, A.: A characterization of symmetric group $S_r$, where $r$ is prime number. Ann. Math. Inform. 40 (2012), 13-23. MR 3005112 | Zbl 1261.20025
[4] Frobenius, G.: Verallgemeinerung des Sylow'schen Satzes. Berl. Ber. (1895), 981-993 German \99999JFM99999 26.0158.01. DOI 10.3931/e-rara-18880
[5] Gorenstein, D.: Finite Groups. Harper's Series in Modern Mathematics, Harper and Row, Publishers, New York (1968). MR 0231903 | Zbl 0185.05701
[6] Gruenberg, K. W., Roggenkamp, K. W.: Decomposition of the augmentation ideal and of the relation modules of a finite group. Proc. Lond. Math. Soc., III. Ser. 31 (1975), 149-166. DOI 10.1112/plms/s3-31.2.149 | MR 0374247 | Zbl 0313.20004
[7] M. Hall, Jr.: The Theory of Groups. The Macmillan Company, New York (1959). MR 0103215 | Zbl 0084.02202
[8] Huppert, B.: Endliche Gruppen. I. Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen 134, Springer, Berlin German (1967). DOI 10.1007/978-3-642-64981-3 | MR 0224703 | Zbl 0217.07201
[9] Khatami, M., Khosravi, B., Akhlaghi, Z.: A new characterization for some linear groups. Monatsh. Math. 163 (2011), 39-50. DOI 10.1007/s00605-009-0168-1 | MR 2787581 | Zbl 1216.20022
[10] Kondrat'ev, A. S., Mazurov, V. D.: Recognition of alternating groups of prime degree from their element orders. Sib. Math. J. 41 (2000), 294-302 translation from Sib. Mat. Zh. 41 359-369 Russian 2000. DOI 10.1007/BF02674599 | MR 1762188 | Zbl 0956.20007
[11] Shao, C., Jiang, Q.: A new characterization of some linear groups by nse. J. Algebra Appl. 13 (2014), Article ID 1350094, 9 pages. DOI 10.1142/S0219498813500941 | MR 3119655 | Zbl 1286.20021
[12] Shi, W. J.: A new characterization of the sporadic simple groups. Group Theory Proc. Conf., Singapore, 1987, Walter de Gruyter, Berlin (1989), 531-540. DOI 10.1515/9783110848397-040 | MR 0981868 | Zbl 0657.20017
[13] Weisner, L.: On the Sylow subgroups of the symmetric and alternating groups. Am. J. Math. 47 (1925), 121-124 \99999JFM99999 51.0117.02. DOI 10.2307/2370639 | MR 1506549
Partner of
EuDML logo