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Abstract. Let G be a group and ω(G) be the set of element orders of G. Let k ∈ ω(G)
and mk(G) be the number of elements of order k in G. Let nse(G) = {mk(G) : k ∈ ω(G)}.
Assume r is a prime number and let G be a group such that nse(G) = nse(Sr), where Sr

is the symmetric group of degree r. In this paper we prove that G ∼= Sr, if r divides the
order of G and r2 does not divide it. To get the conclusion we make use of some well-known
results on the prime graphs of finite simple groups and their components.
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1. Introduction

If n is an integer, then we denote by π(n) the set of all prime divisors of n. Let G

be a group. Denote by π(G) the set of primes p such that G contains an element of

order p. The set of element orders of G is denoted by ω(G).

We denote the set of numbers of elements of G of the same order by nse(G). Set

Mk(G) = {g ∈ G : gk = 1}. Groups G and H are said to be of the same order

type if and only if |Mk(G)| = |Mk(H)|, k = 1, 2, . . ., Thompson in 1987 posed a very

interesting problem as follows (see [12]).

Thompson’s problem. Suppose that groups G and H are of the same order

type. If G is solvable, is it true that H is also necessarily solvable?

So far, nobody can solve it perfectly, or even give a counterexample.

We note that there are finite groups which are not characterizable by nse(G)

and |G|. In 1987, Thompson gave an example as follows: Let G1 = (C2 × C2 ×
C2 ×C2)⋊A7 and G2 = L3(4)⋊C2, where both G1 and G2 are maximal subgroups

of M23. Then nse(G1) =nse(G2), but G1 6∼= G2.
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In [1], it is proved that if nse(G) = nse(Ap), where p is a prime and p divides the

order of |G| but p2 does not divide it, then G ∼= Ap. Also it is proved that PGL(2, p)

is characterizable by nse, where p is a prime and p2 ‖ |G| (see [2]). Also in [9], we see
that PSL2(q) can be determined by exactly the set nse(PSL2(q)) if q 6 13 is a prime

power. In [3], Asboei proved that if G is a group such that nse(G) = nse(Sr), where r

is prime number and |G| = |Sr|, then G ∼= Sr.

In this paper we follow up on these works and as a main result we proved the

following theorem:

Main theorem. Let G be a group such that nse(G) = nse(Sr), where r > 5 is

a prime divisor of |G| but r2 does not divide |G|. Then G ∼= Sr.

Throughout this paper, by prime graph of G, denoted by Γ(G), we mean the

graph with the vertex set π(G), where two distinct primes r and s are joined by an

edge if G contains an element of order rs. Let s(G) be the number of connected

components of Γ(G) and let π1(G), . . . , πs(G)(G) be the sets of vertices of connected

components of Γ(G). If 2 ∈ ω(G), then 2 ∈ π1(G). We denote by ϕ(n) the Euler

totient function. If G is a finite group, then we denote by Pq a Sylow q-subgroup

of G and by nq(G) = |Sylq(G)| the number of Sylow q-subgroups of G. In this paper,

we say pk ‖ n, if pk | n and pk+1 ∤ n, and by |G|t we mean the t-part of |G|.

2. Preliminary results

Lemma 2.1. (1) ([10], Lemma 1) If n > 6 is a natural number, then there are at

least s′(n) prime numbers pi such that (n+ 1)/2 < pi < n. Here

⊲ s′(n) = 6 for n > 48;

⊲ s′(n) = 5 for 42 6 n 6 47;

⊲ s′(n) = 4 for 38 6 n 6 41;

⊲ s′(n) = 3 for 18 6 n 6 37;

⊲ s′(n) = 2 for 14 6 n 6 17;

⊲ s′(n) = 1 for 6 6 n 6 13.

(2) ([10], Lemma 6 (c)) Let S be a finite simple group of Lie type with s(S) > 2

and there exists 2 6 i 6 s(S) such that ki(S) = p. If S ≇ 2G2(q), then for every

1 6 j 6 s(S), j 6= i, there exists at most one prime number s ∈ πj(S) such that

(p + 1)/2 < s < p. If S ∼= 2G2(q), then there exist at most three prime numbers

s ∈ π(S) such that (p+ 1)/2 < s < p.

The next lemma summarizes the basic structural properties of a Frobenius group

(see [5], [6], [8]):
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Lemma 2.2. Let G be a Frobenius group and let H , K be the Frobenius com-

plement and Frobenius kernel of G, respectively. Then s(G) = 2, and the prime

graph components of G are π(H), π(K). Also we know that K is nilpotent and

|H | | |K| − 1.

Lemma 2.3 ([4]). Let G be a finite group and k be a positive integer dividing |G|.
If Mk(G) = {g ∈ G : gk = 1}, then k | |Mk(G)|.

Let mn be the number of elements of order n. We note that mn = kϕ(n), where

k is the number of cyclic subgroups of order n in G.

Lemma 2.4 ([11], Lemma 2.2). Let G be a group and P be a cyclic Sylow

p-subgroup of G of order pa. If there is a prime r such that par ∈ ω(G), then

mpar = mr(CG(P ))mpa . In particular, ϕ(r)mpa | mpar.

3. Proof of the main theorem

In the following we assume that r is prime. Also let G be a group such that r ‖ |G|
and nse(G) = nse(Sr). We are going to prove the main theorem using the following

lemmas:

Lemma 3.1. Let k ∈ ω(Sr) such that r ∤ mk(Sr). Then either k = 1 or k = r.

P r o o f. We know that mk(Sr) =
∑

o(xi)=k

|clSr
(xi)|, where xi belong to distinct

conjugacy classes. Let the cyclic structure of xi, for every i, be 1t12t2 . . . ltl such

that t1, t2, . . . , tl and 1, 2, . . . , l are not equal to r. Since |clSr
(xi)| = r!/(1t12t2 . . .

ltlt1! t2! . . . tl!), by [7], we conclude that r divides |clSr
(xi)| for every i. Hence

r | mk(Sr), which is a contradiction. Consequently, either there exists j such that

tj = r, or 1 6 r 6 l. If tj = r, then the cyclic structure of xi is 1
r, hence o(xi) = 1,

so k = 1. If 1 6 r 6 l, then the cyclic structure of xi is r
1, so o(xi) = r, and so

k = r. �

Lemma 3.2. mr(G) = mr(Sr).

P r o o f. We know that mr(G) ∈ nse(G), so there exists k ∈ ω(Sr) such that

mr(G) = mk(Sr). We have

r | |Mr(G)| = 1 +mr(G) = 1 +mk(Sr).

Therefore, r does not divide mk(Sr). By Lemma 3.1, we conclude that k = r and so

mr(G) = mr(Sr). �
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Lemma 3.3. mr(G) = (r − 1)! and nr(G) = (r − 2)!.

P r o o f. It is clear that Sylow r-subgroups of Sr are cyclic. Therefore, we have

mr(Sr) = (r− 1)nr(Sr). By [13], the number of Sylow r-subgroups of Sr is equal to

r!/(r(r − 1)) = (r − 2)!. Then by Lemma 3.2, we get that mr(G) = (r − 1)!.

Also since r ∈ π(G) and r2 ∤ |G|, Sylow r-subgroups of G are cyclic. Then

(r − 1)! = mr(G) = ϕ(r)nr(G) = (r − 1)nr(G),

which implies that nr(G) = (r − 2)!. �

Lemma 3.4. For every t ∈ π(G), we have tr 6∈ ω(G).

P r o o f. On the contrary, assume that tr ∈ ω(G) for some t ∈ π(G). Since Sylow

r-subgroups of G are cyclic, we conclude mrt(G) = mr(G)(t − 1)k, where k is the

number of cyclic subgroups of order t in CG(R) and R ∈ Sylr(G), by Lemma 2.4.

If r | t − 1k, then mrt(G) > |Sr|, which is impossible. Thus r ∤ (t − 1)k and so

r ∤ mrt(G). It follows that mr(G) = mrt(G), by Lemma 3.1. It follows that t = 2.

We know that

2r | |M2r(G)| = 1 +m2(G) +mr(G) +m2r(G) = 1 +m2(G) + 2mr(G).

Since m2(G) is odd, m2(G) 6= mr(G), hence r | m2(G), by Lemma 3.1. Also we have

r | 1 +mr(G), so r | mr(G), which is a contradiction. �

Remark 3.5. By Lemma 3.4, r is an isolated vertex in Γ(G) and so s(G) > 2

and Γ(G) is disconnected.

Lemma 3.6. If t ∈ π(G) and t 6= r, then |G|t 6 (mr(G))t.

P r o o f. Let x ∈ G \ {1} and o(x) = r. We have that CG(x) is a r-group, by the

previous lemma. Since |G : CG(x)| = |clG(x)|, |clG(x)| is a r′-number. Therefore,

|G|t = |clG(x)|t for every t ∈ π(G). We recall that mr(G) =
∑

o(x)=r

|clG(x)|, where

the x’s belong to distinct conjugacy classes, so the lemma follows. �

Lemma 3.7. r(r − 2)! | |G| and |G| | r! and hence π(G) = π(Sr).

P r o o f. By Lemma 3.6, |G| | r[((r − 1)!)2((r − 1)!)3 . . .] = r!, therefore |G| | r!.
On the other hand, we have (r−2)! | |G|, by Lemma 3.3 and by the fact that |G|r = r,

then the statement of the lemma follows. �
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Lemma 3.8. G has a normal series 1 E H E K E G such that K/H is a non-

abelian simple group, s(K/H) > 2 and t ∈ π(K/H) for every prime (r+1)/2 6 t 6 r.

P r o o f. Let K/H be a chief factor of G, whose order is divisible by r. So

K/H ∼= (S)k, where S is a simple group. We know that r2 ∤ |K/H |, hence k = 1 and

so K/H is a simple group. It follows that either K/H is a non-abelian simple group

or |K/H | = r.

Let R ∈ Sylr(K). Since r2 ∤ |G|, we have r ∤ |H |. Consequently, H ⋊ R is

a Frobenius group, by Lemma 3.4. HenceH is nilpotent, by Lemma 2.2. Let t ∈ π(G)

be a prime number such that (r + 1)/2 6 t < r. We claim that t ∈ π(K/H).

On the contrary, we consider the two following cases:

Case 1. Let t ∈ π(H). If T ∈ Sylt(G), then |T | = t, by Lemma 3.7. Since H is

nilpotent, T E K. Similar to the above discussion, T ⋊ R is a Frobenius group and

so r | t− 1, which is a contradiction.

Case 2. Let t ∈ π(G/K). By Frattini’s argument, we haveG/K ∼= NG(R)/NK(R).

It follows that NG(R) has a Sylow t-subgroup T and |T | = t. Similar to the above

discussion, R⋊ T is a Frobenius group and so t | r − 1, which is a contradiction.

Consequently, for every prime number t such that (r + 1)/2 6 t 6 r, we have

t ∈ π(K/H). Therefore, K/H is a non-abelian simple group and s(K/H) > 2, by

Lemma 3.4. Moreover, there exists j > 2 such that πj(K/H) = {r}. �

Theorem 3.9. K/H is isomorphic neither to any finite simple group of Lie type

nor any sporadic simple group.

P r o o f. First, on the contrary, assume that K/H is isomorphic to a finite

simple group of Lie type. It is well-known that the number of connected components

of a finite simple group of Lie type is at most 5, so s(K/H) 6 5. By Lemma 3.8,

we have that {r} is one of the components of Γ(K/H). From Lemma 2.1, we obtain

that if K/H ∼= 2G2(q), then s′(r) 6 3 and if K/H ≇ 2G2(q), then by part (2)

of Lemma 2.1, we have that every connected component of Γ(K/H), except for

the component that has r as its single element, has at most one element which lies

between (r+1)/2 and r. Also we know that every prime p such that (r+1)/2 6 p 6 r

divides |K/H |. So s′(r) 6 s(K/H) − 1. In the sequel we consider each possibility

for s(K/H).

(1) Let s(K/H) = 2.

Hence s′(r) 6 1, so r ∈ {7, 11, 13}, by Lemma 2.1. In this case, we have the
following cases:

Case 1-1 : Let K/H ∼= Bn(q), where n = 2m > 4.

According to Lemma 3.8, we have π2(Bn(q)) = {r}, so (qn + 1)/2 = rα, where α

is a natural number. Since r2 ∤ |G|, so α = 1 and (qn + 1)/2 = r. Let r = 7, hence
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G π1(G) n2

An, 6 < n = p, p+ 1, p+ 2,
n or n− 2 is not prime π((n− 3)!) p

Ap−1(q), (p, q) 6= (3, 2), (3, 4) π
(

q
p−1
∏

i=1

(qi − 1)
) qp − 1

(q − 1)(p, q − 1)

Ap(q), q − 1 | p+ 1 π
(

q(qp+1 − 1)
p−1
∏

i=2

(qi − 1)
) qp − 1

q − 1

2Ap−1(q) π
(

q
p−1
∏

i=1

(qi − (−1)i)
) (qp + 1)

(q + 1)(p, q + 1)
2Ap(q), q + 1 | p+ 1,
(p, q) 6= (3, 3), (5, 2)

π
(

q(qp+1 − 1)
p−1
∏

i=2

(qi − (−1)i)
) qp + 1

q + 1
2A3(2) {2, 3} 5

Bn(q), 2 ∤ q, n = 2m > 4 π
(

q(qn − 1)
n−1
∏

i=1

(q2i − 1)
)

(qn + 1)/2

Bp(3) π
(

3(3p + 1)
p−1
∏

i=1

(32i − 1)
)

(3p − 1)/2

Cn(q), n = 2m > 2 π
(

q(qn − 1)
n−1
∏

i=1

(q2i − 1)
) qn + 1

(2, q − 1)

Cp(q), q = 2, 3 π
(

q(qp + 1)
p−1
∏

i=1

(q2i − 1)
) qp − 1

(2, q − 1)

Dp(q), p > 5, q = 2, 3, 5 π
(

q
p−1
∏

i=1

(q2i − 1)
) qp − 1

q − 1

Dp+1(q), q = 2, 3 π
(

q(qp + 1)(qp+1 − 1)
p−1
∏

i=1

(q2i − 1)
) qp − 1

(2, q − 1)

2Dn(q), n = 2m > 4 π
(

q
n−1
∏

i=1

(q2i − 1)
) qn + 1

(2, q + 1)

2Dn(2), n = 2m + 1 > 5 π
(

2(2n + 1)(2n−1 − 1)
n−2
∏

i=1

(22i − 1)
)

2n−1 + 1

2Dp(3), p 6= 2m + 1, p > 5 π
(

3
p−1
∏

i=1

(32i − 1)
)

(3p + 1)/4

2Dn(3), n = 2m + 1 6= p, m > 2 π
(

3(3n + 1)(3n−1 − 1)
n−2
∏

i=1

(32i − 1)
)

(3n−1 + 1)/2

G2(q), q ≡ ε (mod 3),
ε = ±1, q > 2 π(q(q3 − ε)(q2 − 1)(q + ε)) q2 − εq + 1

3D4(q) π(q(q6 − 1)(q2 − 1)(q4 + q2 + 1)) q4 − q2 + 1

F4(q), 2 ∤ q π(q(q8 − 1)(q6 − 1)(q2 − 1)) q4 − q2 + 1
2F4(2)

′, 2 ∤ q {2, 3, 5} 13

E6(q) π(q(q12 − 1)(q8 − 1)(q6 − 1)(q5 − 1))
q6 + q3 + 1

(3, q − 1)

2E6(q) π(q(q12 − 1)(q8 − 1)(q6 − 1)(q5 + 1))
q6 − q3 + 1

(3, q + 1)

Table 1. The odd order components of the finite simple group K/H , where s(K/H) = 2.

432



(qn + 1)/2 = 7 and so qn = 13. It follows that n = 1, which is not possible by our

assumption.

Similarly, for r = 11 and r = 13, we get a contradiction.

Case 1-2 : Let K/H ∼= Bp(3), where p is prime.

Similar to the above case, we have (3p − 1)/2 = r. Then r = 13 and p = 3. But

11 ∤ |B3(3)|, which is a contradiction by Lemma 3.8.
Completely similar to the above two cases, K/H cannot be isomorphic to the

groups below:

⊲ Cn(q), where n = 2m > 2;

⊲ Cp(q), where p is prime and q ∈ {2, 3};
⊲ Dp(q), where q ∈ {2, 3, 5}, p > 5;

⊲ Dp+1(q), where p is odd prime and q ∈ {2, 3};
⊲ 2Dn(q), where n = 2m > 4;

⊲ 2Dn(2), where n = 2m + 1 > 5;

⊲ 2Dp(3), where p 6= 2m + 1 and p > 5 is prime;

⊲ 2Dn(3), where n = 2m + 1, n is not prime and m > 2;

⊲ G2(q), where q ≡ ±1 (mod 3) and q > 2;

⊲ 3D4(q);

⊲ F4(q), where q is odd;

⊲ E6(q);

⊲ 2E6(q);

⊲ 2F4(2)
′.

(2) Let s(K/H) = 3.

Then s′(r) 6 2 and r ∈ {7, 11, 13, 17}, by Lemma 2.1. In this case, πj(K/H) = {r}
for some j ∈ {2, 3}. We consider the following cases:
Case 2-1 : Let K/H ∼= A1(q), where q ≡ 1 (mod 4).

Then similar to Case 1-1, we get that either q = r or (q + 1)/2 = r.

Let r = 13. If q = r, then |A1(q)| = 156. So 11 ∤ |A1(q)|, which is a contradiction
by Lemma 3.8. Otherwise, (q+1)/2 = r, which implies that q = 25 and 11 ∤ |A1(q)|,
which is a contradiction.

Similarly for r ∈ {7, 11, 17}, we get a contradiction.
Similarly we get that K/H ≇ A1(q), where q ≡ −1 (mod 4) and K/H ≇ A1(q),

where q = 2m.

Case 2-2 : Let K/H ∼= 2A5(2).

Then r = 11. By comparing the orders of G and K/H we get a contradiction,

since 13 ∈ π(G) and 13 6∈ π(K/H).

Case 2-3 : Let K/H be isomorphic to one of the following groups:

⊲ 2Dp(3), where p = 2n + 1 and n > 2;
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⊲ F4(q), where 2 | q;
⊲ 2F4(q), where q = 22m+1 > 2;

⊲ G2(q), where 3 | q;
⊲ 2G2(q);

⊲ E7(2);

⊲ E7(3);

⊲ Ap, where p and p− 2 are prime.

In all of the above cases we get a contradiction by comparing the orders of K/H

and G, using Lemma 3.8 and also the fact that πj(K/H) = {r} for some j ∈ {2, 3}.

G π1(G) m2 m3

Ap, p and p−2 are prime π((p−3)!(p−1)) p−2 p

A1(q), 4 | q+1 q+1 q 1
2 (q−1)

A1(q), 4 | q−1 q−1 q 1
2 (q+1)

A1(q), 2 | q q q+1 q−1

A2(2) {2} 3 7
2A5(2) {2, 3, 5} 7 11

2Dp(3), p = 2n+1 > 5 π
(

2 ·3(3p−1−1)
p−2
∏

i=1

(32i−1)
)

1
2 (3

p−1+1) 1
4 (3

p+1)

E7(2) {2, 3, 5, 7, 11, 13, 17, 19, 31, 43} 73 127

F4(q), q = 2n > 2 π(q(q6−1)(q4−1)) q4+1 q4−q2+1

2F4(q), q = 22n+1 > 2 π(q(q4−1)(q3+1))
q2−

√

2q3+
q−√

2q+1
q2+

√

2q3+
q+

√
2q+1

G2(q), 3 | q π(q(q2−1)) q2+q+1 q2−q+1
2G2(q), q = 32n+1 π(q(q2−1)) q−√

3q+1 q+
√
3q+1

E7(3)
{2, 3, 5, 7, 11, 13, 19, 37, 41,

61, 73, 547} 757 1093

Table 2. The odd order components of the finite simple group K/H , where s(K/H) = 3.

(3) Let s(K/H) = 4 or K/H ∼= 2G2(q).

Hence s′(r) 6 3 and so r ∈ T = {7, 11, 13, 17, 19, 23, 29, 31, 37}. In this case,
πj(K/H) = {r} for some 2 6 j 6 4.

Let K/H ∼= 2B2(q), where q = 22n+1 > 2.

Then either q− 1 = r, q+
√
2q+1 = r, or q−√

2q+1 = r and using the fact that

r ∈ T , we get a contradiction.

By a similar method we get a contradiction when K/H is isomorphic to either

A2(4),
2E6(2), or E8(q), where q ≡ 2, 3 (mod 5).
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G π1(G) m2 m3 m4

A2(4) {2} 5 7 9
2B2(q), q = 22n+1 > 2 {2} q −√

2q + 1 q +
√
2q + 1 q − 1

2E6(2) {2, 3, 5, 7, 11} 13 17 19

Table 3. The odd order components of the finite simple group K/H , where s(K/H) = 4.

If q ≡ 0, 1, 4 (mod 5)

m1 q120(q18 − 1)(q14 − 1)(q12 − 1)(q10 − 1)(q8 − 1)(q4 + q2 + 1)

m2 (q8 + q7 − q5 − q4 − q3 + q + 1)

m3 (q8 − q7 + q5 − q4 + q3 − q + 1)

m4 (q8 − q6 + q4 − q2 + 1)

m5 (q8 − q4 + 1)

If q ≡ 2, 3 (mod 5)

m1 q120(q20 − 1)(q18 − 1)(q14 − 1)(q12 − 1)(q10 − 1)(q8 − 1)(q4 + 1)(q4 + q2 + 1)

m2 (q8 + q7 − q5 − q4 − q3 + q + 1)

m3 (q8 − q7 + q5 − q4 + q3 − q + 1)

m4 (q8 − q4 + 1)

Table 4. The odd order components of E8(q).

(4) Let s(K/H) = 5.

So K/H ∼= E8(q), where q ≡ 0, 1, 4 (mod 5). In this case, since s(K/H) = 5, we

have, by Lemma 2.1, s′(K/H) 6 4 and r ∈ {5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41},
which can be excluded analogously to the above cases.

Consequently, K/H is not isomorphic to any simple group of Lie type.

Now assuming that K/H is a sporadic group, we consider the following cases:

Case 1 : Let K/H ∼= M12.

We have r = 11, but we can see that 7 ∤ |K/H |, which contradicts Lemma 3.8.
If K/H is isomorphic to HN , Ru, He, Co1, Co3, Co2, M11, M23, M24, J1, J3,

J4, F23, F1, F2, F3, ON , Ly, F ′

24, then we produce a contradiction similarly.

Case 2 : Let K/H ∼= J2.

We have r = 7. By comparing the orders of K/H and G we get a contradiction.

The method for excluding Mcl, Fi22, HS, SZ is the same.

Case 3 : Let K/H ∼= M22.

By considering the order of K/H and G, we see that |H |3 = 32. Let P be the

Sylow 3-subgroup ofH , which is normal in G. Then we see that a Sylow 11-subgroup

of G acts fixed point freely on P and so G has a Frobenius subgroup of order 99,

which is impossible, since 11 ∤ 32 − 1. �
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Corollary 3.10. K/H is isomorphic to Ar .

P r o o f. By Lemma 3.8, we get that K/H is isomorphic to a non-abelian simple

group. By Theorem 3.9, it follows thatK/H ∼= An for some integer n. By considering

the orders of G and K/H it is easy to see that K/H ∼= Ar. �

Theorem 3.11. G is isomorphic to Sr.

P r o o f. Let G = G/H and K = K/H . We know that Ar
∼= K ∼= KCG(K)/

CG(K) 6 G/CG(K) ∼= NG(K)/CG(K) 6 Aut(Ar) ∼= Sr. On the other hand,

G has a normal subgroup, say M , such that G/M ∼= G/CG(K). So we have ei-

ther G/M ∼= Ar or G/M ∼= Sr. Let the first case occur. If M = 1, then G ∼= Ar,

which is a contradiction, since (r − 1)! 6∈ nse(Ar) and so nse(Ar) 6= nse(Sr). As

|G| | |Sr|, we conclude that |M | = 2. So M is a normal subgroup of order 2 of G

and then M ⊆ Z(G). It follows that there is an element of order 2r in G, which

is a contradiction. Now assume G/M = Sr. Since |G| | |Sr|, we have M = 1 and

G ∼= Sr as we wanted. �

Corollary 3.12 follows immediately from the main theorem.

Corollary 3.12. Let G be a finite group and r be a prime number. If nse(G) =

nse(Sr) and |G| = |Sr|, then G ∼= Sr.

In view of the results obtained in the paper, we propose the following conjecture:

Conjecture. Let G be a finite group and r be prime. If nse(G)=nse(Sr), then

G ∼= Sr.
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