Previous |  Up |  Next

Article

Keywords:
fractional delay integrodifferential equation; Laplace transform; controllability; Mittag–Leffler function; Caputo fractional derivative
Summary:
This paper describes the controllability of nonlinear fractional delay integrodifferential systems with multiple delays in control. Necessary and sufficient conditions for the controllability criteria for linear fractional delay system are established. Further sufficient conditions for the controllability of nonlinear fractional delay integrodifferential system are obtained by using fixed point arguments. Examples are provided to illustrate the results.
References:
[1] Bagley, R. L., Torvik, P. J.: A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 27 (1983), 201-210. DOI 10.1122/1.549724 | Zbl 0515.76012
[2] Bagley, R. L., Torvik, P. J.: Fractional calculus in the transient analysis of viscoelastically damped structures. AIAA J. 23 (1985), 918-925. DOI 10.2514/3.9007 | Zbl 0562.73071
[3] Balachandran, K.: Global relative controllability of non-linear systems with time-varying multiple delays in control. Int. J. Control. 46 (1987), 193-200. DOI 10.1080/00207178708933892 | MR 0895702
[4] Balachandran, K., Dauer, J. P.: Controllability of perturbed nonlinear delay systems. IEEE Trans. Autom. Control. 32(1987), 172-174. DOI 10.1109/tac.1987.1104536 | MR 0872593 | Zbl 0614.93011
[5] Balachandran, K., Kokila, J., Trujillo, J.J.: Relative controllability of fractional dynamical systems with multiple delays in control. Comput. Math. Appl. 64 (2012), 3037-3045. DOI 10.1016/j.camwa.2012.01.071 | MR 2989332 | Zbl 1268.93021
[6] Balachandran, K., Zhou, Y., Kokila, J.: Relative controllability of fractional dynamical systems with delays in control. Commun. Nonlinear. Sci. Numer. Simul. 17 (2012), 3508-3520. DOI 10.1016/j.cnsns.2011.12.018 | MR 2913988 | Zbl 1248.93022
[7] Balachandran, K., Zhou, Y., Kokila, J.: Relative controllability of fractional dynamical systems with distributive delays in control. Comput. Math. Appl. 64(2012), 3201-3209. DOI 10.1016/j.camwa.2011.11.061 | MR 2989348
[8] Bellman, R., Cooke, K. L.: Differential Difference Equations. Academic Press, New York 1963. DOI 10.1002/zamm.19650450612 | MR 0147745 | Zbl 0163.10501
[9] Chow, T. S.: Fractional dynamics of interfaces between soft-nanoparticles and rough substrates. Physics Letter A 342 (2005), 148-155. DOI 10.1016/j.physleta.2005.05.045
[10] Dauer, J. P., Gahl, R. D.: Controllability of nonlinear delay systems. J. Optimiz. Theory. App. 21 (1977), 59-68. DOI 10.1007/bf00932544 | MR 0433306 | Zbl 0325.93007
[11] Dauer, J. P.: Nonlinear perturbations of quasi-linear control systems. J. Math. Anal. Appl. 54 (1976), 717-725. DOI 10.1016/0022-247x(76)90191-8 | MR 0415473 | Zbl 0339.93004
[12] Halanay, A.: Differential Equations: Stability, Oscillations, Time Lags. Academic Press, New York 1966. DOI 10.1016/s0076-5392(08)x6057-6 | MR 0216103 | Zbl 0144.08701
[13] Hale, J.: Theory of Functional Differential Equations. Springer, New York 1977. DOI 10.1007/978-1-4612-9892-2 | MR 0508721 | Zbl 0662.34064
[14] He, J. H.: Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput. Methods. Appl. Mech. Eng. 167 (1998), 57-68. DOI 10.1016/s0045-7825(98)00108-x | MR 1665221 | Zbl 0942.76077
[15] Nirmala, R. Joice, Balachandran, K.: Controllability of nonlinear fractional delay integrodifferential systems. J. Applied Nonlinear Dynamics 5 (2016), 59-73. DOI 10.5890/dnc.2016.03.007 | MR 3577640
[16] Nirmala, R. Joice, Balachandran, K., Germa, L. R., Trujillo, J. J.: Controllability of nonlinear fractional delay dynamical systems. Rep. Math. Phys. 77 (2016), 87-104. DOI 10.1016/s0034-4877(16)30007-6 | MR 3461800
[17] Kaczorek, T.: Selected Problems of Fractional Systems Theory: Lecture Notes in Control and Information Science. Springer-Verlag, Berlin 2011. DOI 10.1007/978-3-642-20502-6 | MR 2798773
[18] Klamka, J.: Controllability of linear systems with time variable delay in control. Int. J. Control 24(1976), 869-878. DOI 10.1080/00207177608932867 | MR 0424300
[19] Klamka, J.: Relative controllability of nonlinear systems with delay in control. Automatica 12(1976), 633-634. DOI 10.1016/0005-1098(76)90046-7 | MR 0452869
[20] Kilbas, A., Srivastava, H. M., Trujillo, J. J.: Theory and Application of Fractional Differential Equations. Elsevier, Amsterdam 2006. MR 2218073
[21] Machado, J. T.: Analysis and design of fractional order digital control systems. Systems Analysis, Modelling and Simulation 27 (1997), 107-122. Zbl 0875.93154
[22] Machado, J. T., Costa, A. C., Quelhas, M. D.: Fractional dynamics in DNA. Commun. Nonlinear. Sci. Numer. Simul. 16 (2011), 2963-2969. DOI 10.1016/j.cnsns.2010.11.007 | Zbl 1218.92038
[23] Magin, R. L: Fractional calculus in bioengineering. Critical Rev. Biomed. Eng. 32 (2004), 1-377. DOI 10.1615/critrevbiomedeng.v32.i1.10
[24] Mainardi, F.: Fractional calculus: some basic problems in continuum and statistical mechanics. In: Fractals and Fractional Calculus in Continuum Mechanics (A. Carpinteri and F. Mainardi, eds.), Springer-Verlag 1997, pp. 291-348. DOI 10.1007/978-3-7091-2664-6_7 | MR 1611587
[25] Manzanilla, R., Marmol, L. G., Vanegas, C. J.: On the controllability of differential equation with delayed and advanced arguments. Abstr. Appl. Anal. 2010 (2010), 1-16. DOI 10.1155/2010/307409 | MR 2660394
[26] Miller, K. S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley and Sons, New York 1993. MR 1219954 | Zbl 0789.26002
[27] Mur, T., Henriquez, H. R.: Relative controllability of linear systems of fractional order with delay. Math. Control. Relat. F 5(2015), 845-858. DOI 10.3934/mcrf.2015.5.845 | MR 3485753 | Zbl 1332.93061
[28] Oguztoreli, M. N.: Time-Lag Control Systems. Academic Press, New York 1966. DOI 10.1016/s0076-5392(08)x6192-2 | MR 0217394 | Zbl 0143.12101
[29] Oldham, K. B., Spanier, J.: The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order. Academic Press, New York 1974. DOI 10.1016/s0076-5392(09)x6012-1 | MR 0361633
[30] Ortigueira, M. D.: On the initial conditions in continuous time fractional linear systems. Signal Process 83 (2003), 2301-2309. DOI 10.1016/s0165-1684(03)00183-x | Zbl 1145.94367
[31] Podlubny, I.: Fractional Differential Equations. Academic Press, New York 1999. MR 1658022 | Zbl 1160.65308
[32] Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations to Methods of their Solution and Some of their Applications. Academic Press, 1999. DOI 10.1016/s0076-5392(99)x8001-5 | MR 1658022 | Zbl 0924.34008
[33] Sabatier, J., Agrawal, O. P., (eds.), J. A. Tenreiro-Machado: Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer-Verlag, New York 2007. DOI 10.1007/978-1-4020-6042-7 | MR 3184154 | Zbl 1116.00014
[34] Schiff, J. L.: The Laplace Transform: Theory and Applications. Springer, New York 1999. DOI 10.1007/978-0-387-22757-3 | MR 1716143 | Zbl 0934.44001
[35] Sikora, B.: Controllability of time-delay fractional systems with and without constraints. IET Control Theory Appl. 10(2016), 320-327. DOI 10.1049/iet-cta.2015.0935 | MR 3468656
[36] Smith, H.: An Introduction to Delay Differential Equations with Application to the Life Sciences. Springer, New York 2011. DOI 10.1007/978-1-4419-7646-8 | MR 2724792
[37] Wei, J.: The controllability of fractional control systems with control delay. Comput. Math. Appl. 64 (2012), 3153-3159. DOI 10.1016/j.camwa.2012.02.065 | MR 2989343 | Zbl 1268.93027
Partner of
EuDML logo