Previous |  Up |  Next

Article

Keywords:
aggregation operator; fuzzy weighted average; fuzzy numbers; fuzzy weights
Summary:
The weighted average is a well-known aggregation operator that is widely applied in various mathematical models. It possesses some important properties defined for aggregation operators, like monotonicity, continuity, idempotency, etc., that play an important role in practical applications. In the paper, we reveal whether and in which way such properties can be observed also for the fuzzy weighted average operator where the weights as well as the weighted values are expressed by noninteractive fuzzy numbers. The usefulness of the obtained results is discussed and illustrated by several numerical examples.
References:
[1] Baas, S., Kwakernaak, H.: Rating and ranking of multiple-aspect alternatives using fuzzy sets. Automatica 13 (1977), 47-58. DOI 10.1016/0005-1098(77)90008-5 | MR 0439026
[2] Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners. Springer-Verlag, Berlin 2007.
[3] Calvo, T., Mayor, G., (eds.), R. Mesiar: Aggregation Operators: New Trends and Applications. Physica-Verlag, Heidelberg 2002. DOI 10.1007/978-3-7908-1787-4 | MR 1936384 | Zbl 0983.00020
[4] Campos, L. M. De, Heute, J. F., Moral, S.: Probability intervals: a tool for uncertain reasoning. Int. J. Uncertainty, Fuzziness and Knowledge-Based Systems 2 (1994), 167-196. DOI 10.1142/s0218488594000146 | MR 1282406
[5] Dong, W. M., Wong, F. S.: Fuzzy weighted averages and implementation of the extension principle. Fuzzy Sets and Systems 21 (1987), 183-199. DOI 10.1016/0165-0114(87)90163-1 | MR 0871975 | Zbl 0611.65100
[6] Dubois, D.: Fuzzy weighted averages and fuzzy convex sums: Authors response. Fuzzy Sets and Systems 213 (2013), 106-108. DOI 10.1016/j.fss.2012.09.003 | MR 3007014
[7] Dubois, D., Prade, H.: Additions of interactive fuzzy numbers. IEEE Trans. Automat. Control 26(1981), 4, 926-936. DOI 10.1109/tac.1981.1102744 | MR 0635852
[8] Fodor, J. C., Roubens, M.: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht 1994. DOI 10.1007/978-94-017-1648-2_3 | Zbl 0827.90002
[9] Ghazinoory, S., Zadeh, A. E., Kheirkhah, A. S.: Application of fuzzy calculations for improving portfolio matrices. Inform. Sci. 180 (2010), 9, 1582-1590. DOI 10.1016/j.ins.2010.01.012
[10] Grabisch, M., Marichal, J. L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press, Cambridge 2009. DOI 10.1017/cbo9781139644150 | MR 2538324 | Zbl 1206.68299
[11] Guh, Y.-Y., Hong, C. C., Wang, K. M., Lee, E. S.: Fuzzy weighted average: A max-min paired elimination method. Comp. Math. Appl. 32 (1996), 115-123. DOI 10.1016/0898-1221(96)00171-x
[12] Guh, Y. Y., Hon, C. C., Lee, E. S.: Fuzzy weighted average: The linear programming approach via Charness and Coopers rule. Fuzzy Sets and Systems 117 (2001), 1, 157-160. DOI 10.1016/s0165-0114(98)00333-9 | MR 1891319
[13] Hung, K. C., Julian, P., Chien, T., Jin, W. T. H.: A decision support system for engineering design based on an enhanced fuzzy MCDM approach. Expert Systems Appl. 37 (1) (2010), 202-213. DOI 10.1016/j.eswa.2009.04.069
[14] Chang, P. T., Hung, K. C.: Applying thefFuzzy-weighted-average approach to evaluate network security systems. Comp. Math. Appl. 49 (2005), 1797-1814. DOI 10.1016/j.camwa.2004.10.042 | MR 2154685
[15] Kao, C., Liu, S. T.: Fractional programming approach to fuzzy weighted average. Fuzzy Sets and Systems 120 (2001), 3, 435-444. DOI 10.1016/s0165-0114(99)00137-2 | MR 1829262 | Zbl 1103.90411
[16] Kaufmann, A., Gupta, M. M.: Introduction to Fuzzy Arithmetic: Theory and Applications. (Second edition). Van Nostrand Reinhold, New York 1991. MR 1132439
[17] Klir, G. J., Pan, Y.: Constrained fuzzy arithmetic: Basic questions and some answers. Soft Computing 2 (1998), 100-108. DOI 10.1007/s005000050038
[18] Klir, G. J., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice Hall, New Jersey, 1996. MR 1443433 | Zbl 0915.03001
[19] Lin, C. H., Tan, B., Hsieh, P. J.: Application of the fuzzy weighted average in strategic portfolio management. Decision Sciences 36 (2005), 3, 489-511. DOI 10.1111/j.1540-5414.2005.00081.x
[20] Liu, F., Mendel, J. M.: Aggregation using the fuzzy weighted average as computed by the Karnik-Mendel algorithms. IEEE Trans. Fuzzy Systems 16 (2008), 1, 1-12. DOI 10.1109/tfuzz.2007.896229
[21] Liu, X., Mendel, J. M., Wu, D.: Analytical solution methods for the fuzzy weighted average. Inform. Sci. 187 (2012), 151-170. DOI 10.1016/j.ins.2011.10.006 | MR 2869869 | Zbl 1248.03072
[22] Pavlačka, O., Talašová, J.: Application of the Fuzzy Weighted Average of Fuzzy Numbers in Decision Making Models. In: New Dimensions in Fuzzy Logic and Related Technologies. Vol II. (M. Štěpnička,, V. Novák, and U. Bodenhofer, eds.) Proc. 5th EUSFLAT Conference, Ostravská univerzita, Ostrava 2007, pp. 455-462.
[23] Pavlačka, O., Talašová, J.: Fuzzy vectors as a tool for modeling uncertain multidimensional quantities. Fuzzy Sets and Systems 161 (11) (2010), 1585-1603. DOI 10.1016/j.fss.2009.12.008 | MR 2608263 | Zbl 1186.90144
[24] Pavlačka, O.: Modeling uncertain variables of the weighted average operation by fuzzy vectors. Inform. Sci. 181 (22) (2011), 4969-4992. DOI 10.1016/j.ins.2011.06.022 | MR 2832874 | Zbl 1241.68117
[25] Pavlačka, O.: Note on the lack of equality between fuzzy weighted average and fuzzy convex sum. Fuzzy Sets and Systems 213 (2013), 102-105. DOI 10.1016/j.fss.2012.08.003 | MR 3007013 | Zbl 1291.91052
[26] Ricci, R. G., Mesiar, R.: Multi-attribute aggregation operators. Fuzzy Sets and Systems 181 (2011), 1-13. DOI 10.1016/j.fss.2011.06.008 | MR 2823722 | Zbl 1236.68236
[27] Sachs, T., Tiong, R. L. K.: Quantifying qualitative information on risks: development of the QQIR method. J. Construction Engrg. Management-Asce 135 (2009), 1, 56-71. DOI 10.1061/(asce)0733-9364(2009)135:1(56)
[28] Talašová, J.: NEFRIT - Multicriteria Decision Making Based on Fuzzy Approach. Central Europ. J. Oper. Res. 8 (2000), 4, 297-319. MR 1832867 | Zbl 0981.90035
[29] Wang, Y. M., Elhag, T. M. S.: Fuzzy TOPSIS method based on alpha level sets with an application to bridge risk assessment. Expert Systems Appl. 31 (2006), 2, 309-319. DOI 10.1016/j.eswa.2005.09.040
[30] Wang, Y. M., Elhag, T. M. S.: On the normalization of interval and fuzzy weights. Fuzzy Sets and Systems 157 (2006), 2456-2471. DOI 10.1016/j.fss.2006.06.008 | MR 2254175 | Zbl 1171.68764
[31] Wei, C. C., Chang, H. W.: A new approach for selecting portfolio of new product development projects. Expert Systems Appl. 38 (2011), 1, 429-434. DOI 10.1016/j.eswa.2010.06.081
[32] Wu, W. Y., Lin, C. H., Kung, J. Y., Lin, C. T.: A new fuzzy TOPSIS for fuzzy MADM problems under group decisions. J. Intelligent and Fuzzy Systems 18 (2007), 2, 109-115. MR 2327710 | Zbl 1119.68193
[33] Xu, Q., Ma, L., Nie, W. F., Li, P., Zhang, J. W., Sun, J. Z.: Adaptive fuzzy weighted average filter for synthesized image. In: Computational Science and Its Applications - ICCSA 2005, Part 3, Lecture Notes in Computer Science, vol. 3482, Springer-Verlag, Berlin 2005, pp. 292-298. DOI 10.1007/11424857_32
Partner of
EuDML logo