[2] Beem, J.K., Ehrlich, P.E., Powell, Th.G.:
Warped product manifolds in relativity. Selected studies: physics-astrophysics, mathematics, history of science, North-Holland, Amsterdam-New York, 1982, pp. 41–56.
MR 0662851 |
Zbl 0491.53047
[3] Beldjilali, G., Belkhelfa, M.:
Kählerian structures and $\mathcal{D}$-homothetic Bi-warping. J. Geom. Symmetry Phys. 42 (2016), 1–13.
MR 3586441
[4] Blair, D.E.:
Contact manifolds in Riemannian geometry. Lecture Notes in Mathematics, vol. 509, Springer, 1976, pp. 17–35.
MR 0467588 |
Zbl 0319.53026
[5] Blair, D.E.:
Riemannian geometry of contact and symplectic manifolds. Progress in Mathematics, vol. 203, Birkhäuser Boston, 2002.
MR 1874240 |
Zbl 1011.53001
[10] Bursztyn, H., Cavalcanti, G.R., Gualtieri, M.:
Generalized Kähler and hyper-Kähler quotients. Poisson geometry in mathematics and physics. Contemp. Math. 450 (2008), 61–77.
DOI 10.1090/conm/450/08734 |
MR 2397619
[11] Gates, S.J., Jr., , Hull, C.M., Rocek, M.:
Twisted multiplets and new supersymmetric nonlinear sigma models. Nuclear Phys. B248 (1984), 157–186.
MR 0776369
[21] Oubiña, J.A.:
New classes of almost contact metric structures. Publ. Math. Debrecen 32 (1985), 187–193.
MR 0834769 |
Zbl 0611.53032
[23] Sekiya, K.:
Generalized almost contact structures and generalized Sasakian structures. Osaka J. Math. 52 (2015), 303–306.
MR 3326601 |
Zbl 1325.53107
[24] Tanno, S.:
The topology of contact Riemannian manifolds. Illinois J. Math. 12 (1968), 700–717.
MR 0234486 |
Zbl 0165.24703
[26] Vaisman, I.:
From generalized Kähler to generalized Sasakian structure. J. Geom. Symmetry Phyd. 18 (2010), 63–86.
MR 2668883
[27] Yano, K., Kon, M.:
Structures on manifolds. Series in Pure Math., vol. 3, World Scientific, 1984.
MR 0794310 |
Zbl 0557.53001