
Archivum Mathematicum

Habib Bouzir; Gherici Beldjilali; Mohamed Belkhelfa; Aissa Wade
Generalized Kählerian manifolds and transformation of generalized contact
structures

Archivum Mathematicum, Vol. 53 (2017), No. 1, 35–48

Persistent URL: http://dml.cz/dmlcz/146074

Terms of use:
© Masaryk University, 2017

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/146074
http://dml.cz


ARCHIVUM MATHEMATICUM (BRNO)
Tomus 53 (2017), 35–48

GENERALIZED KÄHLERIAN MANIFOLDS

AND TRANSFORMATION OF GENERALIZED

CONTACT STRUCTURES

Habib Bouzir, Gherici Beldjilali, Mohamed Belkhelfa, and Aissa Wade

Abstract. The aim of this paper is two-fold. First, new generalized Kähler
manifolds are constructed starting from both classical almost contact metric
and almost Kählerian manifolds. Second, the transformation construction
on classical Riemannian manifolds is extended to the generalized geometry
setting.

1. Introduction

Let M be an even dimensional smooth manifold together with its generalized
tangent bundle TM ⊕ T ∗M . A generalized complex structure on M is given by a
bundle isomorphism J : TM ⊕ T ∗M → TM ⊕ T ∗M which preserves the natural
inner product on TM ⊕ T ∗M , satisfies J2 = − id and some integrability condition
(see Section 2.4 below for more details). A generalized Kähler structure on M is a
pair of commuting generalized complex structures that are compatible, in the sense,
that they define a positive definite metric on TM ⊕ T ∗M . Such a structure can
also be equivalently defined as a quadruple (g, b, J+, J−), where g is a Riemannian
metric, b is a two-form and J± are almost Hermitian structures on (M, g) satisfying
some torsion condition. In other words, a generalized Kähler structure on M can be
viewed as a bi-Hermitian structure satisfying some torsion condition. Generalized
Kähler structures on smooth manifolds were introduced and studied by Gualtieri
in [14]. They form a large class of geometric structures which includes classical
Kählerian structures. Furthermore, they hold remarkable properties of Kähler
geometry such as the Hodge decomposition. In fact, bi-Hermitian structures already
appeared in the setting of the (2, 2) supersymmetric sigma model [11]. In the last
decade, generalized Kähler geometry has received a lot of attention. Examples
of Kähler structures appearing in the literature were constructed from various
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approaches: by exploiting symmetry [15], by a reduction procedure [9, 10, 18] by
means of deformation theory [12, 13] as well as twistors [1].

One of the goals of this paper is to explore other ways for constructing generalized
Kähler structures. Results in our paper can be divided in two parts. In the first part,
we construct generalized Kähler structures starting from classical odd-dimensional
almost contact metric manifolds or even-dimensional almost Kählerian manifolds
and using the D-homothetic bi-warping construction (see [3, 6]). In the second
part, we extend the D-homothetic transformation construction to generalized
Riemannian manifolds. The D-homothetic bi-warping [3, 6] is a construction in
classical Riemannian manifolds generalizing the warped product and defined as
follows. Let (M1, g1) be a Riemannian manifold together with two smooth functions
f and h on M1. Let (M2, ϕ2, ξ2, η2, g2) be an almost contact metric manifold. The
D-homothetic bi-warping M1 ×(f,h) M2 is the product manifold M1 ×M2 with the
metric g = g1 + f2g2 + f2(h2 − 1)η2 ⊗ η2.

The paper is organized as follows. In Section 2, we review basic definitions
and results that are needed to state and prove our results. In Section 3, we state
and proof our first construction result (Theorem 3.2). This result shows how to
build generalized Kählerian manifolds out of a β-Kenmotsu manifold and using the
D-homothetic bi-warping framework. In Section 4, generalized Kählerian structures
are constructed from classical Kählerian structures using the warped product
metric and a D-homothetic bi-warping. In Section 5, we explore an extension of
D-homothetic deformation to generalized geometry.

2. Preliminaries

2.1. Preliminaries on contact metric geometry.
Throughout this paper, all manifolds are connected and smooth. We will briefly
review the basic ingredients that are needed here, for more details on these classical
structures, we refer the reader to references [4, 5, 8, 27].

An (2n+ 1)-dimensional Riemannian manifold (M, g) is said to be an almost
contact metric manifold if there exists a triple (ϕ, ξ, η) consisting of a (1, 1) tensor
field ϕ, a vector field ξ (called the Reeb vector field) and a 1-form η such that
(2.1) η(ξ) = 1 , ϕ2(X) = −X + η(X)ξ , g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ) ,
for any vector fields X, Y on M . For any almost contact metric manifold, we have:

ϕξ = 0 and η ◦ ϕ = 0 .
The fundamental 2-form ω of an almost contact metric manifold (M,ϕ, ξ, η) is

defined by ω(X,Y ) = g(X,ϕY ). We say that (ϕ, ξ, η) is normal if
(2.2) Nϕ(X,Y ) = [ϕ,ϕ](X,Y ) + 2dη (X,Y )ξ = 0 ,
where [ϕ,ϕ] is the Nijenhuis tensor of ϕ and d denotes the exterior derivative.

Suppose there are smooth functions α and β on an almost contact metric
manifold (M,ϕ, ξ, η, g) such that:
(2.3) (∇ϕ)(X,Y ) = α

(
g(X,Y )ξ − η(Y )X

)
+ β

(
g(ϕX, Y )ξ − η(Y )ϕX

)
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where (∇ϕ)(X,Y ) = ∇XϕY −ϕ(∇XY ), X, Y ∈ Γ(TM) and ∇ is the Levi-Civita
connection with respect to the metric g. Then M is called a trans-Sasakian
manifold of type (α, β) (cf. [4], [5], [17]). Equivalently a trans-Sasakian manifold
of type (α, β) is an a normal almost contact metric manifold (M,ϕ, ξ, η, g) whose
fundamental 2-form ω satisfies:

(2.4) dω = β(ω ∧ η) , dη = αω , ϕ∗(δω) = 0 ,

where δω is the coderivative of ω given by:

δω(X) = −
2n∑
i=1

(
(∇eiω)(ei, X) + (∇ϕeiω)(ϕei, X)

)
− (∇ξϕ)(ξ,X) ,

with {ei} is an orthonormal frame on M .
In particular, we have the definitions:
• M is said to be β-Kenmotsu when α = 0.
• M is said to be α-Sasakian when β = 0.
• If α = β = 0 then M is called a cosymplectic or coKählerian manifold.

The following result was proved by J.C. Marrero:

Proposition 2.1 ([19]). A trans-Sasakian manifold of dimension ≥ 5 is either
α-Sasakian, β-Kenmotsu or co-Kählerian.

2.2. Hermitian manifolds.
An almost complex manifold (M,J) equipped with a Hermitian metric g is called
an almost Hermitian manifold. Thus, we have:

(2.5) J2 = −1, g(JX, JY ) = g(X,Y ) .

An almost complex structure J is said to be integrable if its Nijenhuis tensor [J, J ]
vanishes with

[J, J ](X,Y ) = [JX, JY ]− [X,Y ]− J [X, JY ]− J [JX, Y ] .

For an almost Hermitian manifold (M,J, g), its fundamental Kähler form Ω is
given by:

Ω(X,Y ) = g(X,JY ) .

We say that (M,J, g) is almost Kähler if dΩ = 0. An almost Kähler manifold
with integrable J is called a Kähler manifold, and thus is characterized by the
conditions: dΩ = 0 and NJ = 0. One can prove that both these conditions combined
are equivalent with the single condition:

∇J = 0 .

For more background on almost complex structure manifolds, we refer the reader
to [27].
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2.3. Warped product metrics.
Let (M ′

, g
′) and (M, g) be two Riemannian manifolds and let f be a function on

M
′ . Then the Riemannian metric g̃ = g

′ +fg on M ′×M is called a warped product
metric. We use the notation M

′ ×f M for the product manifold. In Riemaniann
geometry, the notion of warped product of metrics is known to produce very
interesting metrics.

Let (M,ϕ, ξ, η, g) be an almost contact metric manifold with dimM = 2n+1. The
equation η = 0 defines a 2n-dimensionl distribution D on M . By an 2n-homothetic
deformation or D-homothetic deformation [24] we mean a change of structure
tensors of the form:

(2.6) ϕ = ϕ, η = aη, ξ = 1
a
ξ , g = ag + a(a− 1)η ⊗ η,

where a is a positive constant. If (M,ϕ, ξ, η, g) is a contact metric structure with
contact form η, then (M,ϕ, ξ, η, g) is also a contact metric structure [24].

The idea works equally well for almost contact metric structures. In this direction,
Blair [6] introduced the notion of D-homothetic warped metric on M̃ = M ′ ×M
where M ′ is a Riemannian manifolds and M is an almost contact metric manifold
by:

(2.7) g̃ = g′ + fg + f(f − 1)η ⊗ η ,

where f is a positive function on M ′. Recently, Beldjilali and Belkhelfa introduced
a generalization of D-homothetic warped metric on M̃ = M ′ ×M as follows [3]:

(2.8) g̃ = g′ + f2g + f2(h2 − 1)η ⊗ η ,

where f and h be two smooth functions on M ′ and fh 6= 0 everywhere, this metric
g̃ is called a D-homothetic bi-warping metric.
In particular, if h = ±1 then we recover a warped product metric and if h = ±f
we get a D-homothetically warped metric.

2.4. Preliminaries on generalized geometry.
In this section we briefly recall basic notions and results from generalized geometry.
For more details, we refer the reader to references [14], [22], [26].

Let M be a m-dimensional smooth manifold, the space of sections of the vector
bundle TM ⊕ T ∗M −→M is endowed with the following R-bilinear operations.
• A symmetric, non-degenerate and bilinear form 〈−,−〉 is defined by:

〈X + α, Y + β〉 := 1
2(ιXβ + ιY α) .

• The Courant bracket [−,−]c is a skew-symmetric bracket,

[X + α, Y + β]c := [X,Y ] + LXβ − LY α−
1
2d(ιXβ − ιY α) ,

where X, Y ∈ TM and α, β ∈ T ∗M .
A subbundle is Courant involutive if the space of sections of the subbundle is

closed under the Courant bracket. Let M be an even dimensional smooth manifold:
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Definition 2.2 ([14]). A generalized almost complex structure on an even dimen-
sional manifold M is an endomorphism J of the direct sum TM ⊕ T ∗M which
satisfies two conditions,

J + J ∗ = 0 , J 2 = − id ,
where J ∗ is defined by 〈JA,B〉 = 〈A,J ∗B〉 for any A, B ∈ Γ(TM ⊕ T ∗M).
Definition 2.3 ([14]).
• A generalized Riemannian metric on M is a positive definite metric on TM⊕T ∗M .
• A generalized Kähler structure is a pair (J1,J2) of commuting generalized
complex structures such that G = −J1J2 is a generalized Riemannian metric.
• LetB be a smooth 2-form. Then the invertible bundle map given by exponentiating
B,

eB :=
(

1 0
B 1

)
: X + α 7→ X + α+ iXB

is called a B-field transformation.

Lemma 2.4 ([14, 23]). A generalized Kähler metric is uniquely determined by a
Riemannian metric g together with a 2-form b as follows:

G(g, b) =
(
−g−1b g−1

g − bg−1b bg−1

)
=
(

1 0
b 1

)(
0 g−1

g 0

)(
1 0
−b 1

)
Let C+ be a positive definite subbundle of TM ⊕ T ∗M and C− a negative

definite subbundle with respect to the inner product which are given by:
C± = {X ± g(X, ·) + b(X, ·)/ X ∈ TM} .

The projection from C± to TM , J1 induces two almost complex structures J±
on TM . If both (g, J+) and (g, J−) are Hermitian structures, (g, J±) is called a
bi-Hermitian structure.
Theorem 2.5 ([14]). A generalized Kähler structure (J1,J2) is equivalent to bi-
Hermitian structure (g, b, J±) which satisfies the following condition:

dω±
(
J±X, J±Y, J±Z

)
= ±db(X,Y, Z) ,

where ω± = g(X, J±Y ), and for all vector fields X, Y , Z.
Proposition 2.6 ([14]). There is a one to-one correspondence between generalized
Riemannian metrics G on M and pairs (g, b), where g is a classical generalized
Riemannian metric and b a differential 2-form on M .

Let M be an odd dimensional smooth manifold:
Definition 2.7. A generalized almost contact structure on an odd dimensional
manifold M is a triple (Φ, E±) where Φ is an endomorphism of TM ⊕ T ∗M , and
E+ and E− are sections of TM ⊕ T ∗M which satisfy

Φ + Φ∗ = 0(2.9)

Φ ◦ Φ = − Id +E+ ⊗ E− + E− ⊗ E+(2.10)

〈E±, E±〉 = 0 , 2〈E+, E−〉 = 1 .(2.11)
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It immediately follows that Φ(E±) = 0. In fact, such a Φ has three eigenvalues:
λ = 0, ±

√
−1. Moreover, its kernel is the rank 2 complex vector bundle spanned by

E±. If we denote by E(1,0) the
√
−1 eigenbundle and E(0,1) the −

√
−1 eigenbundle

then we have [23]:

E(1,0) = {X + α−
√
−1Φ(X + α) | 〈E±, X + α〉 = 0} ,

E(0,1) = {X + α+
√
−1Φ(X + α) | 〈E±, X + α〉 = 0} .

The following complex vector bundles are maximal isotropic:

L+ = LE+ ⊕ E(1,0) and L− = LE− ⊕ E(1,0) .

When either L+ or L− is involutive then (Φ, E±) is simply called a generalized
contact structure. If both L± are involutive, we say that (Φ, E±) is said to be a
strong generalized contact structure.

Definition 2.8. A generalized almost contact metric structure on M2n+1 is a
quadruple (Φ, E±, G), where (Φ, E±) is a generalized almost contact structure and
G is a generalized Riemannian metric such that:

(2.12) − ΦGΦ = G− E+ ⊗ E+ − E− ⊗ E− .

3. From trans-Sasakian to generalized Kählerian structures

Let (M2n+1, ϕ, ξ, η, g) be a trans-Saskian manifold of type (α, β) and I be an
open interval of R. Given two functions f , h : I → R with fh 6= 0 everywhere, we
get two hermitian structures on the product M̃2n+2 = M × I. These are defined
by (see [3]):

g̃ = f2g + f2(h2 − 1)η ⊗ η + dt2 ,(3.1)

J̃± = ±ϕ+ fhη ⊗ ∂t− 1
fh

dt⊗ ξ .(3.2)

Proposition 3.1. These two pairs (g̃, J̃±) form a bi-Hermitian structure on
M̃2n+2.

Proof. The proof is straightforward. It is simply obtained by using (2.5). �

Now, our main goal is to find a pair (f, h) of functions defined on some fixed
interval I ⊂ R for which, there exists a 2-form b̃ such that (g̃, b̃, J̃+, J̃−) defines a
generalized Kählerian structure. We need to write down the fundamental 2-form
ω̃± of (g̃, J̃±). This is defined by:

ω̃±

((
X, a

∂

∂t

)
,
(
Y, b

∂

∂t

))
= g̃
((
X, a

∂

∂t

)
, J̃±

(
Y, b

∂

∂t

))
,

for all
(
X, a ∂∂t

)
,
(
Y, b ∂∂t

)
vector fields on M̃ . Thus, we obtain:

ω̃± = ±f2ω + 2fh dt ∧ η .(3.3)
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There follows:

dω̃± = ±2ff ′dt ∧ ω ± f2dω − 2fh dt ∧ dη .(3.4)

Using (2.4) we get:

dω̃± = ±2ff ′dt ∧ ω ± βf2ω ∧ η − 2αfh dt ∧ ω .(3.5)
Thus

dω̃±(J̃±·, J̃±·, J̃±·) = ±2ff ′
(
fhη) ∧ ω ± βf2ω ∧

(
− 1
fh
dt
)
− 2αfh

(
fhη

)
∧ ω

= ±f
(

2ff ′hη − β

h
dt
)
∧ ω − 2αf2h2η ∧ ω .

Assume α = 0, then we get:

dω̃±(J̃±·, J̃±·, J̃±·) = ±f
(

2ff ′hη − β

h
dt
)
∧ ω .

This can be re-written as:
dω̃±(J̃±·, J̃±·, J̃±·) = ±db̃(·, ·, ·)

where b̃ is the 2-form given by:

b̃ = 2
β
f2f ′h ω

and the following system must be satisfied:

(3.6)


2
β

(
f2f ′h

)′
= −β fh

dβ = 0 .
Suppose β is constant, then the last condition is trivial. If in addition, we fix a
bounded function f such that f2f ′ 6= 0 then there exist two functions h satisfying
the system (3.6). More precisely, one gets:

(3.7) h(t) = ±
√

4c− β2f4

2f2f ′
,

where c is a sufficiently large constant such that 4c− β2f4 ≥ 0 on the interval I.
There follows our first main theorem:

Theorem 3.2. Let (M2n+1, ϕ, ξ, η, g) be a β-Kenmotsu manifold where β is
constant and let I be an open interval of R. Given a bounded function f : I → R
such that ff ′ 6= 0 and a sufficiently large constant c, we consider the positive func-
tion h defined as in Equation (3.7) along with the bi-Hermitian structure (g̃, J̃±)
on M̃ = M × I defined as in (3.1) and (3.2). Let b̃ be the 2-form given by:

b̃ =
√

4c− β2f4 ω .

Then (g̃, b̃, J̃+, J̃−) defines a generalized Kählerian structure on M̃ .

Remark 3.3. In the above proposition we could also pick the negative function h
defined as in Equation (3.7) then the sign of the 2-form b̃ changes.
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Corollary 3.4. Given a β-Kenmotsu manifold (M2n+1, ϕ, ξ, η, g) where β is
constant, there is a two-parameter family of generalized coKähler structures on
M ×R2.

Proof. Applying Theorem 3.2, we get a generalized Kähler structure (J1,J2) on
M̃ = M ×R. We identify G = −J1 ◦ J2 with its corresponding pair (g, b), where
g is a Riemannian metric and b is a 2-form. Using the standard classical almost
contact structure (ϕR = 0, ∂∂t , dt) on R, we get a generalized coKähler structure on
M = M̃ ×R, with Φ = J1 and G ≡ (g+dt2, b), E+ = (0, dt) and E− = ( ∂∂t , 0). �

From Propositions 1 and 2 in [20], it follows that, for any 3-dimensional normal
almost contact metric manifold (M,ϕ, ξ, η, g), we have:

(∇Xϕ)Y = 1
2 trg(ϕ∇ξ)

(
g(X,Y )ξ − η(Y )X

)
+ 1

2 div ξ
(
g(ϕX, Y )ξ − η(Y )ϕX

)
,

where ∇ is the Levi-Civita connection on M i.e. (M3, ϕ, ξ, η, g) is a trans-Sasakian
manifold of type

( 1
2 trg(ϕ∇ξ), 1

2 div ξ
)
, (see [7]).

Using Theorem (3.2), we immediately get:

Proposition 3.5. Any connected normal almost contact metric manifold
(M3, ϕ, ξ, η, g), such that, trg(ϕ∇ξ) = 0 and div ξ is a constant, gives rise to a
multi-parameter family of generalized Kählerian structures on M ×R, where ∇ is
the Levi-Civita connection on M .

4. From almost Kählerian to generalized Kählerian

Let (M ′2n, J ′, g′, ω′) be an almost Kählerian manifold. We define an almost
contact metric structure (ϕ, η, ξ, g) on M = M ′ ×R by:

ϕ = J ′ , η = dr , ξ = ∂

∂r
, g = f2g′ + dr2 ,

where f = f(r) is a function on R.
On M̃2n+2 = M × R = M ′ × R × R, we define a complex structures and a

metric by:

J̃± = ±ϕ± hkdr ⊗ ∂

∂t
∓ 1
hk
dt⊗ ∂

∂r
,

g̃ = f2h2g′ + h2k2dr2 + dt2 ,

where h = h(t) and k = k(t) are two functions on R. Then (g̃, J±) is a bi-Hermitian
structure and the fundamental 2-form ω± is:

ω±

((
X, a

∂

∂r
, b
∂

∂t

)
,
(
Y, a′

∂

∂r
, b′

∂

∂t

))
= g̃
((
X, a

∂

∂r
, b
∂

∂t

)
, J±

(
Y, a′

∂

∂r
, b′

∂

∂t

))
,

thus, we obtain:
ω± = ±f2h2ω′ − 2hkdr ∧ dt .

There immediately follows that:

dω± = ±2f2hh′dt ∧ ω′ ± 2ff ′h2dr ∧ ω′ .
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Thus

dω±(J̃±·, J̃±·, J̃±·) = ±2f2hh′(±hkdr) ∧ ω′ ± 2ff ′h2(∓ 1
hk
dt) ∧ ω′

=
(
2f2h2h′kdr − 2ff ′h

k
dt
)
∧ ω′ .(4.1)

Directly, we see that dω± is exact if and only if:

(4.2) (∗) :
{
d(ff ′) = 2f2 ,

d(h2h′k) = −2hk ,
or (∗∗) :

{
d(−ff ′) = 2f2 ,

d(h2h′k) = 2hk .

First from (∗) we obtain the following two ODEs:

f ′2 + ff ′′ − 2f2 = 0 ,(4.3)

2k2h′2 + hh′′k2 + k′kh′h+ 2 = 0 .(4.4)
The solution f(r) of the first ODE (4.3) is:

f(r) = ± 1√
2

√
ae−2r − be2r ,

where a and b are two constants. For the second ODE we observe that any function
k(t) which satisfies:

k(t) = ±
√
c− h(t)4

h′(t)h(t)2 ,

with c > 0 is a solution of the differential equation (4.4). Under these conditions
the equation (4.1) gives:

dω±(J̃±·, J̃±·, J̃±·) = d
(1

2
√
c− h4(ae−2r + be2r)ω′

)
.

Secondly, from (∗∗) we obtain the following two ODEs:
(4.5) f ′2 + ff ′′ + 2f2 = 0,

(4.6) 2k2h′2 + hh′′k2 + k′kh′h− 2 = 0 .
The solution f(r) of the first ODE (4.5) is:

f(r) = ±
√
a sin(2r) + b cos(2r) ,

where a and b are two constants. For the second ODE we observe that any function
k(t) which satisfies:

k(t) = ± 1
h′(t)

is a solution of the differential equation (4.6). Under these conditions the equation
(4.1) gives:

dω±(J̃±·, J̃±·, J̃±·) = d
(
h2(a cos(2r)− b sin(2r)

)
ω′
)
.

Therefore
(
g̃, 1

2
√
c− h4(ae−2r+be2r)ω′, J̃±

)
and

(
g̃,
(
h2(a cos(2r)−b sin(2r)

)
ω′, J̃±

)
are two 1-parameter families of generalized Kählerian structures.
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Remark 4.1. In particular, when a = −1, b = 0 and h = r, we get(
g̃, −1

2
√
c− r4e−2rω′, J̃±

)
and

(
g̃,−r2 cos(2r)ω′, J̃±

)
two generalized Kählerian

structures, where the second one is given by Sekiya (see [23]).

5. Transformation of generalized almost contact manifolds

Let (Mi, Gi,Φi, Ei±), i = 1, 2 be two generalized almost contact metric manifolds.
For each i = 1, 2, we identify Gi with the pair (gi, bi) of a Riemannian metric gi
and 2-form bi associated to it. Write:

Ei± = (ξi±, ηi±) and Φi =
(
ϕi π]i
ω[i −ϕi∗

)
.

Without loss of generality, we can assume that b1 6= 0 since otherwise, we can
replace (G1,Φ1, E

1
±) by (eb1G1e−b1 , eb1Φ1e−b1 , eb1E1

±) on M1.
Under the above notations, a transformation of (G2,Φ2, E

2
±) is given by:

(5.1) G2 ≡ (f2g2, f
2b2) , E2

± = ( 1
f
ξ2
±, fη

2
±) and Φ2 =

(
ϕ2

1
f2π

]
2

f2ω[2 −ϕ∗2

)
,

where f is a constant.

Remark 5.1. Let D1 = Γ(TM2) and D2 = Γ(T ∗M2). Note that, the transforma-
tion (5.1) is D1-homothetic and D2-homothetic, because:

G2(A,A) := 〈G2A,A〉 = 1
2

( 1
f2 |α|

2 − f2|b2X|2 + f2|X|2
)
,

where A = X + α ∈ Γ(TM2 ⊕ T ∗M2), and | | means the norm on M2.
If A ∈ D1, i.e. α = 0, we have:

G2(A,A) = f2G2(A,A) ,
and if A ∈ D2, i.e. X = 0, we have:

G2(A,A) = 1
f2G2(A,A) ,

where,
G2(A,A) := 〈G2A,A〉 = 1

2
(
|α|2 − |b2X|2 + |X|2

)
.

We can call this transformation a D-homothetic deformation with D = {D1,D2}.

Proposition 5.2. Under the above notations (5.1), the transformation structure
(G2,Φ2, E2

±), is a generalized almost contact metric structure on M2.

Proof. Let (M2, G2,Φ2, E
2
±) be a generalized almost contact manifold which

satisfies the conditions (2.9), (2.10) and (2.11). By simple calculations, we have:
〈E2
±, E

2
±〉 = η2

±(ξ2
±) = 0 ,(5.2)

〈E2
+, E

2
−〉 = 1

2[η2
+(ξ2
−) + η2

−(ξ2
+)] = 1

2 ,(5.3)
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(5.4)

(
Φ2◦Φ2 = −I+E2

+⊗E2
−+E2

−⊗E2
+
)
⇒



ϕ2
2 + π]2(ω[2) = −I + η2

+ ⊗ ξ2
− + η2

− ⊗ ξ2
+,

ω[2(ϕ2)− ϕ∗2(ω[2) = η2
+ ⊗ η2

− + η2
− ⊗ η2

+,

ϕ2(π]2)− π]2(ϕ∗2) = ξ2
+ ⊗ ξ2

− + ξ2
− ⊗ ξ2

+

ω[2(π]2) + (ϕ∗2)2 = −I+ ξ2
+ ⊗ η2

−+ ξ2
+ ⊗ η2

+

By definition of transformation structure in (5.1) we have:

〈Φ2(X + α), Y + β〉 = 1
2

[
(f2ω[2(X)− ϕ∗2(α))(Y ) + β(ϕ2(X) + 1

f2π
]
2(α))

]
= −1

2

[
(f2ω[2(Y )(X)− ϕ∗2β(X) + α(ϕ2(Y ) + 1

f2α(π]2(β))
]

= −〈X + α,Φ2(Y + β)〉 ,

where X + α, Y + β ∈ Γ(TM ⊕ T ∗M), then Φ2 + Φ2
∗ = 0.

From (5.2) and (5.3) we obtain:

〈E2
±, E

2
±〉 = 0 , and 〈E2

+, E
2
−〉 = 1

2 ,

Moreover, we have:

Φ2 ◦ Φ2 =
(

ϕ2
2 + π]2(ω[2) 1

f2ϕ2(π]2)− 1
f2π

]
2(ϕ∗2)

f2ω[2(ϕ2)− f2ϕ∗2(ω[2) ω[2(π]2) + (ϕ∗2)2

)
,

and

−I+E2
+⊗E2

−+E2
−⊗E2

+ =
(
−I + η2

+ ⊗ ξ2
− + η2

− ⊗ ξ2
+

1
f2 [ξ2

+ ⊗ ξ2
− + ξ2

− ⊗ ξ2
+]

f2[η2
+ ⊗ η2

− + η2
− ⊗ η2

+] −I + ξ2
+ ⊗ η2

− + ξ2
+ ⊗ η2

+

)
.

Using (5.4) we get:

Φ2 ◦ Φ2 = −I + E2
+ ⊗ E2

− + E2
− ⊗ E2

+ .

Thus, (Φ2, E2
±) is a generalized almost contact structure on M2.

Since (M2, G2,Φ2, E
2
±) is a generalized almost contact metric structure, and from

(2.12) we have:

(5.5) − Φ2G2Φ2 = G2 − E2
+ ⊗ E2

+ − E2
− ⊗ E2

− .
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By a computation, we obtain:

(5.6)



ϕ2g
−1
2 b2ϕ2 − ϕ2g

−1
2 ω[2 − π

]
2g2ϕ2 + π]2b2g

−1
2 b2ϕ2 − π]2b2g

−1
2 ω[2

= −g−1
2 b2 − η2

+ ⊗ ξ2
+ − η2

− ⊗ ξ2
−

ω[2g
−1
2 b2ϕ2 − ω[2g−1

2 ω[2 + ϕ∗2g2ϕ2 − ϕ∗2b2g
−1
2 b2ϕ2 + ϕ∗2b2g

−1
2 ω[2

= g2 − b2g
−1
2 b2 − η2

+ ⊗ η2
+ − η2

− ⊗ η2
−

ϕ2g
−1
2 b2π

]
2 + ϕ2g

−1
2 ϕ∗2 − π

]
2g2π

]
2 + π]2b2g

−1
2 b2π

]
2 + π]2b2g

−1
2 ϕ∗2

= g−1
2 − ξ2

+ ⊗ ξ2
+ − ξ2

− ⊗ ξ2
−

ω[2g
−1
2 b2π

]
2 + ω[2g

−1
2 ϕ∗2 + ϕ∗2g2π

]
2 − ϕ∗2b2g

−1
2 b2π

]
2 − ϕ∗2b2g

−1
2 ϕ∗2

= b2g
−1
2 − ξ2

+ ⊗ η2
+ − ξ2

− ⊗ η2
−

A generalized Riemannian metric G2 of transformation structure is given by:

G2 =
(

1 0
f2b2 1

)(
0 1

f2 g
−1
2

f2g2 0

)(
1 0

−f2b2 1

)
=
(

−g−1
2 b2

1
f2 g
−1
2

−f2b2g
−1
2 b2 + f2g2 b2g

−1
2

)
.

Thus

(5.7) − Φ2 G2 Φ2 =
(
A B
C D

)
,

where

A = ϕ2g
−1
2 b2ϕ2 − ϕ2g

−1
2 ω[2 + π]2b2g

−1
2 b2ϕ2 − π]2g2ϕ2 − π]2b2g

−1
2 ω[2

B = 1
f2 [ϕ2g

−1
2 b2π

]
2 + ϕ2g

−1
2 ϕ∗2 + π]2b2g

−1
2 b2π

]
2 − π

]
2g2π

]
2 + π]2b2g

−1
2 ϕ∗2]

C = f2[ω[2g−1
2 b2ϕ2 − ω[2g−1

2 ω[2 − ϕ∗2b2g
−1
2 b2ϕ2 + ϕ∗2g2ϕ2 + ϕ∗2b2g

−1
2 ω[2]

D = ω[2g
−1
2 b2π

]
2 + ω[2g

−1
2 ϕ∗2 − ϕ∗2b2g

−1
2 b2π

]
2 + ϕ∗2g2π

]
2 − ϕ∗2b2g

−1
2 ϕ∗2

by the other side:

G2 − E2
+ ⊗ E2

+ − E2
− ⊗ E2

− =(
−g−1

2 b2 − η2
+ ⊗ ξ2

+ − η2
− ⊗ ξ2

−
1
f2 [g−1

2 − ξ2
+ ⊗ ξ2

+ − ξ2
− ⊗ ξ2

−]
f2[−b2g

−1
2 b2 + g2 − η2

+ ⊗ η2
+ − η2

− ⊗ η2
−] b2g

−1
2 − ξ2

+ ⊗ η2
+ − ξ2

− ⊗ η2
−

)
.

Using (5.6) we get:

−Φ2 G2 Φ2 = G2 − E2
+ ⊗ E2

+ − E2
− ⊗ E2

− and G2(E2
±) = E2

∓ .

Therefore, (M2, G2,Φ2, E2
±) is a generalized almost contact metric structure. �

We will discuss the following question elsewhere: is the class of generalized Sasakian
structures invariant under D-homothetic deformation ?
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