Previous |  Up |  Next

Article

Keywords:
Einstein manifolds; quasi Einstein manifolds; generalized quasi Einstein manifolds; quasi-conformal curvature tensor; space-matter tensor
Summary:
Quasi Einstein manifold is a simple and natural generalization of Einstein manifold. The object of the present paper is to study some properties of generalized quasi Einstein manifolds. We also discuss $G(QE)_{4}$ with space-matter tensor and some properties related to it. Two non-trivial examples have been constructed to prove the existence of generalized quasi Einstein spacetimes.
References:
[1] Ahsan, Z.: A symmetry property of the spacetime of general relativity in terms of the space-matter tensor. Brazilian J. Phys. 26 (1996), 572–576.
[2] Ahsan, Z., Siddiqui, S. A.: On the divergence of the space-matter tensor in general relativity. Adv. Studies Theor. Phys. 4 (2010), 543–556. MR 2739701 | Zbl 1216.83008
[3] Ahsan, Z., Siddiqui, S. A.: Concircular curvature tensor and fluid spacetimes. Int J. Theor. Phys. 48, 11 (2009), 3202–3212. DOI 10.1007/s10773-009-0121-z | MR 2546699 | Zbl 1255.83110
[4] Amur, K., Maralabhavi, Y. B.: On quasi-conformal flat spaces. Tensor (N.S.) 31, 2 (1977), 194–198. MR 0461380
[5] Bejan, C. L.: Characterizations of quasi-Einstein manifolds. An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N. S.) 53 (2007), 67–72. MR 2522383 | Zbl 1199.53078
[6] Bejan, C. L., Binh, T. Q.: Generalized Einstein manifolds. In: Differential Geometry and its Applications, Proceedings of the 10th International Conference on DGA2007, Olomouc, Czech Republic, 27–31 August 2007, World Sci. Publ., Hackensack, NJ, 2008, 57–64. MR 2462782 | Zbl 1172.53029
[7] Besse, A. L.: Einstein Manifolds. Classics in Mathematics, Springer-Verlag, Berlin, Heidelberg, 1987. MR 2371700 | Zbl 0613.53001
[8] Chaki, M. C., Maity, R. K.: On quasi Einstein manifolds. Publ. Math. Debrecen 57 (2000), 297–306. MR 1798715 | Zbl 0968.53030
[9] Chaki, M. C.: On generalized quasi-Einstein manifolds. Publ. Math. Debrecen 58 (2001), 683–691. MR 1828719 | Zbl 1062.53035
[10] Chaki, M. C., Ray, S.: Spacetimes with covariant constant energy-momentum tensor. Int. J. Theor. Phys. 35 (1996), 1027–1032. DOI 10.1007/BF02302387 | MR 1386778
[11] De, U. C., Guha, N., Kamilya, D.: On generalized Ricci-recurrent manifolds. Tensor (N.S.) 56 (1995), 312–317. MR 1413041 | Zbl 0859.53009
[12] De, U. C., Ghosh, G. C.: On quasi-Einstein manifolds. Period. Math. Hungar. 48 (2004), 223–231. DOI 10.1023/B:MAHU.0000038977.94711.ab | MR 2077698 | Zbl 1059.53030
[13] De, U. C., Ghosh, G. C.: On conformally flat special quasi-Einstein manifolds. Publ. Math. Debrecen 66 (2005), 129–136. MR 2128688 | Zbl 1075.53039
[14] De, U. C., Ghosh, G. C.: On quasi Einstein and special quasi Einstein manifolds. In: Proc. of the Conf. of Mathematics and its Applications, Kuwait University, Kuwait, 2004, 178–191. MR 2143298
[15] De, U. C., Gazi, A. K.: On nearly quasi Einstein manifolds. Novi Sad J. Math. 38 (2008), 115–121. MR 2526034 | Zbl 1274.53066
[16] De, U. C., Sarkar, A.: On the quasi-conformal curvature tensor of a $(k,\mu )$-contact metric manifolds. Math. Rep. 14, 2 (2012), 115–129. MR 3051849
[17] De, U. C., Matsuyama, Y.: Quasi-conformally flat manifolds satisfying certain conditions on the Ricci tensor. SUT J. Math. 42, 2 (2006), 295–303. MR 2419267
[18] De, U. C., Jun, J. B., Gazi, A. K.: Sasakian manifolds with quasi-conformal curvature tensor. Bull. Korean Math. Soc. 45, 2 (2008), 313–319. DOI 10.4134/BKMS.2008.45.2.313 | MR 2419079 | Zbl 1148.53306
[19] De, U. C., Mallick, S.: Spacetimes admitting $W_{2}$-curvature tensor. Int. J. Geom. Methods Mod. Phys. 11 (2014), 1–8. MR 3194321 | Zbl 1291.53022
[20] Hosseinzadeh, A., Taleshian, A.: On conformal and quasi-conformal curvature tensors of an N(k)-quasi-Einstein manifold. Commun. Korean Math. Soc. 27 (2012), 317–326. DOI 10.4134/CKMS.2012.27.2.317 | MR 2962525 | Zbl 1252.53057
[21] Debnath, P., Konar, A.: On quasi-Einstein manifolds and quasi-Einstein spacetimes. Differ. Geom. Dyn. Syst. 12 (2010), 73–82. MR 2606548
[22] Gray, A.: Einstein-like manifolds which are not Einstein. Geom. Dedicate 7 (1998), 259–280. MR 0505561
[23] Guha, S.: On a perfect fluid space-time admitting quasi conformal curvature tensor. Facta Univ., Ser. Mech. Automat. Control Robot. 3, 14 (2003), 843–849. MR 2021832 | Zbl 1056.53022
[24] Guha, S. R.: On quasi-Einstein and generalized quasi-Einstein manifolds. Facta Univ., Ser. Mech. Automat. Control Robot. 3, 14 (2003), 821–842. MR 2021831 | Zbl 1056.53033
[25] Güler, S., Demirbağ, S. A.: A study of generalized quasi-Einstein spacetimes with applications in general relativity. Int. J. Theor. Phys. 55, 1 (2016), 548–562. DOI 10.1007/s10773-015-2692-1 | Zbl 1337.83010
[26] Mantica, C. A., Suh, Y. J.: Conformally symmetric manifolds and quasi conformally recurrent Riemannian manifolds. Balkan J. Geom. Appl. 16, 1 (2011), 66–77. MR 2785717 | Zbl 1226.53007
[27] Mantica, C. A., Suh, Y. J.: Pseudo-Z symmetric spacetimes. J. Math. Phys. 55, 4 (2014), 1–12. DOI 10.1063/1.4871442 | MR 3390591
[28] Nagaraja, H. G.: On N(k)-mixed quasi-Einstein manifolds. Eur. J. Pure Appl. Math. 3 (2010), 16–25. MR 2578821
[29] Novello, M., Reboucas, M. J.: The stability of a rotating universe. Astrophysical Journal 225 (1978), 719–724. DOI 10.1086/156533
[30] O’Neill, B.: Semi-Riemannian Geometry. Academic Press, New York, 1983. MR 0719023
[31] Özgür, C.: N(k)-quasi Einstein manifolds satisfying certain conditions. Chaos, Solutions and Fractals 38 (2008), 1373–1377. DOI 10.1016/j.chaos.2008.03.016 | MR 2456527 | Zbl 1154.53311
[32] Özgür, C.: On some classes of super quasi-Einstein manifolds. Chaos, Solitons and Fractals 40 (2009), 1156–1161. DOI 10.1016/j.chaos.2007.08.070 | MR 2526102 | Zbl 1197.53059
[33] Özgür, C.: On a class of generalized quasi-Einstein manifolds. Applied Sciences, Balkan Society of Geometers 8 (2006), 138–141. MR 2216533 | Zbl 1103.53023
[34] Özgür, C., Sular, S.: On N(k)-quasi-Einstein manifolds satisfying certain conditions, Balkan J. Geom. Appl. 13 (2008), 74–79. MR 2395278
[35] Özgür, C., Sular, S.: On some properties of generalized quasi-Einstein manifolds. Indian J. Math. 50 (2008), 297–302. MR 2517733 | Zbl 1168.53026
[36] Özgür, C., Sular, S.: Characterizations of generalized quasi-Einstein manifolds. An. St. Univ. Ovidius Constanta 20 (2012), 407–416. MR 2928431 | Zbl 1274.53073
[37] Patterson, E. M.: Some theorems on Ricci-recurrent spaces. Journal London Math. Soc. 27 (1952), 287–295. DOI 10.1112/jlms/s1-27.3.287 | MR 0048891 | Zbl 0048.15604
[38] Petrov, A. Z.: Einstein Spaces. Pergamon Press, Oxford, 1949. MR 0244912
[39] Ray, D.: Gödel-like cosmological solutions. Math. Phys. 21, 12 (1980), 2797–2798. DOI 10.1063/1.524401 | MR 0597598
[40] Sachs, R. K., Hu, W.: General Relativity for Mathematician. Springer Verlag, New York, 1977. MR 0503498
[41] Schouten, J. A.: Ricci-Calculus. Springer, Berlin, 1954. Zbl 0057.37803
[42] Taleshian, A., Hosseinzadeh, A. A.: Investigation of some conditions on N(k)-quasi Einstein manifolds. Bull. Malays. Math. Sci. Soc. 34 (2011), 455–464. MR 2823578 | Zbl 1232.53041
[43] Yano, K., Sawaki, S.: Riemannian manifolds admitting a conformal transformation group. J. Differential Geom. 2 (1968), 161–184. DOI 10.4310/jdg/1214428253 | MR 0233314 | Zbl 0167.19802
[44] Zengin, F. Ö.: m-Projectively flat spacetimes. Math. Reports 4, 4 (2012), 363–370. MR 3086715 | Zbl 1289.53089
Partner of
EuDML logo