Previous |  Up |  Next

Article

Keywords:
$\eta $-Ricci soliton; $\eta $-Einstein manifold; $(LCS)_n$-manifold
Summary:
The object of the present paper is to study $\eta $-Ricci solitons on $\eta $-Einstein $(LCS)_n$-manifolds. It is shown that if $\xi $ is a recurrent torse forming $\eta $-Ricci soliton on an $\eta $-Einstein $(LCS)_n$-manifold then $\xi $ is (i) concurrent and (ii) Killing vector field.
References:
[1] Ashoka, S. R., Bagewadi, C. S., Ingalahalli, G.: Certain results on Ricci solitons in $\alpha $-Sasakian manifolds. Geometry 2013, ID 573925 (2013), 1–4. MR 3100666 | Zbl 1314.53116
[2] Ashoka, S. R., Bagewadi, C. S., Ingalahalli, G.: A geometry on Ricci solitons in $(LCS)_{n}$-manifolds. Diff. Geom.-Dynamical Systems 16 (2014), 50–62. MR 3226604 | Zbl 1331.53045
[3] Atceken, M.: On geometry of submanifolds of $(LCS)_n$-manifolds. International Journal of Mathematics and Mathematical Sciences 2012, ID 304647 (2014), 1–11. MR 2888754
[4] Atceken, M., Hui, S. K.: Slant and pseudo-slant submanifolds of LCS-manifolds. Czechoslovak Math. J. 63 (2013), 177–190. DOI 10.1007/s10587-013-0012-6 | MR 3035505
[5] Bagewadi, C. S., Ingalahalli, G.: Ricci solitons in Lorentzian-Sasakian manifolds. Acta Math. Acad. Paeda. Nyire. 28 (2012), 59–68. MR 2942704
[6] Bejan, C. L., Crasmareanu, M.: Ricci solitons in manifolds with quasi constant curvature. Publ. Math. Debrecen 78 (2011), 235–243. DOI 10.5486/PMD.2011.4797 | MR 2777674 | Zbl 1274.53097
[7] Blaga, A. M.: $\eta $-Ricci solitons on para-kenmotsu manifolds. Balkan J. Geom. Appl. 20 (2015), 1–13. MR 3367062 | Zbl 1334.53017
[8] Blaga, A. M., Crasmareanu, M.: Torse forming $\eta $-Ricci solitons in almost para-contact $\eta $-Einstein geometry. Filomat, (to appear).
[9] Chandra, S., Hui, S. K., Shaikh, A. A.: Second order parallel tensors and Ricci solitons on $(LCS)_n$-manifolds. Commun. Korean Math. Soc. 30 (2015), 123–130. DOI 10.4134/CKMS.2015.30.2.123 | MR 3346486 | Zbl 1338.53055
[10] Chen, B. Y., Deshmukh, S.: Geometry of compact shrinking Ricci solitons. Balkan J. Geom. Appl. 19 (2014), 13–21. MR 3223305 | Zbl 1316.53052
[11] Chen, B. Y., Deshmukh, S.: Ricci solitons and concurrent vector fields. arXiv:1407.2790 [math.DG] 2014 (2014), 1–12. MR 3367063
[12] Cho, J. T., Kimura, M.: Ricci solitons and real hypersurfaces in a complex space form. Tohoku Math. J. 61 (2009), 205–212. DOI 10.2748/tmj/1245849443 | MR 2541405 | Zbl 1172.53021
[13] Deshmukh, S., Al-Sodais, H., Alodan, H.: A note on Ricci solitons. Balkan J. Geom. Appl. 16 (2011), 48–55. MR 2785715 | Zbl 1220.53060
[14] Hamilton, R. S.: Three Manifold with positive Ricci curvature. J. Differential Geom. 17, 2 (1982), 255–306. DOI 10.4310/jdg/1214436922 | MR 0664497
[15] Hamilton, R. S.: The Ricci flow on surfaces. Contemporary Mathematics 71 (1988), 237–261. DOI 10.1090/conm/071/954419 | MR 0954419 | Zbl 0663.53031
[16] Hinterleitner, I., Kiosak, V.: $\varphi (Ric)$-vektor fields in Riemannian spaces. Arch. Math. 5 (2008), 385–390. MR 2501574
[17] Hinterleitner, I., Kiosak, V.: $\varphi (Ric)$-vector fields on conformally flat spaces. AIP Conf. Proc. 1191 (2009), 98–103.
[18] Hui, S. K.: On $\phi $-pseudo symmetries of $(LCS)_n$-manifolds. Kyungpook Math. J. 53 (2013), 285–294. DOI 10.5666/KMJ.2013.53.2.285 | MR 3078089
[19] Hui, S. K., Atceken, M.: Contact warped product semi-slant submanifolds of $(LCS)_n$-manifolds. Acta Univ. Sapientiae Mathematica 3, 2 (2011), 212–224. MR 2915836 | Zbl 1260.53081
[20] Hui, S. K., Chakraborty, D.: Some types of Ricci solitons on $(LCS)_n$-manifolds. J. Math. Sciences: Advances and Applications 37 (2016), 1–17.
[21] Hui, S. K., Lemence, R. S., Chakraborty, D.: Ricci solitons on three dimensional generalized Sasakian-space-forms. Tensor, N. S. 76 (2015).
[22] Ingalahalli, G., Bagewadi, C. S.: Ricci solitons in $\alpha $-Sasakian manifolds. ISRN Geometry 2012, ID 421384 (2012), 1–13. DOI 10.5402/2012/421384 | MR 3100666 | Zbl 1247.53052
[23] Matsumoto, K.: On Lorentzian almost paracontact manifolds. Bull. Yamagata Univ. Nat. Sci. 12 (1989), 151–156. MR 0994289
[24] Mihai, I., Rosca, R.: On Lorentzian para-Sasakian manifolds. In: Classical Anal., World Sci. Publ., Singapore, 1992, 155–169. MR 1173650
[25] Mikeš, J., Rachůnek, L.: Torse forming vector fields in T-semisymmetric Riemannian spaces. In: Steps in Diff. Geom., Proc. of the Colloquium on Diff. Geom., Univ. Debrecen, Debrecen, Hungary, 2000, 219–229. MR 1859300
[26] Mikeš, J.: Differential Geometry of Special Mappings. Palacky Univ. Press, Olomouc, 2015. MR 3442960 | Zbl 1337.53001
[27] Nagaraja, H. G., Premlatta, C. R.: Ricci solitons in Kenmotsu manifolds. J. Math. Analysis 3 (2012), 18–24. MR 2966274
[28] Narain, D., Yadav, S.: On weak concircular symmetries of $(LCS)_{2n+1}$-manifolds. Global J. Sci. Frontier Research 12 (2012), 85–94. MR 2850604
[29] O’Neill, B.: Semi Riemannian geometry with applications to relativity. Academic Press, New York, 1983. MR 0719023 | Zbl 0531.53051
[30] Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. arXiv:math/0211159 [Math.DG] 2002 (2002), 1–39. Zbl 1130.53001
[31] Perelman, G.: Ricci flow with surgery on three manifolds. arXiv:math/0303109 [Math.DG] 2003 (2013), 1–22.
[32] Prakasha, D. G.: On Ricci $\eta $-recurrent $(LCS)_n$-manifolds. Acta Univ. Apulensis 24 (2010), 109–118. MR 2663680 | Zbl 1224.53061
[33] Shaikh, A. A.: On Lorentzian almost paracontact manifolds with a structure of the concircular type. Kyungpook Math. J. 43 (2003), 305–314. MR 1983436 | Zbl 1054.53056
[34] Shaikh, A. A.: Some results on $(LCS)_n$-manifolds. J. Korean Math. Soc. 46 (2009), 449–461. DOI 10.4134/JKMS.2009.46.3.449 | MR 2515129 | Zbl 1193.53094
[35] Shaikh, A. A., Ahmad, H.: Some transformations on $(LCS)_n$-manifolds. Tsukuba J. Math. 38 (2014), 1–24. DOI 10.21099/tkbjm/1407938669 | MR 3261910 | Zbl 1296.53056
[36] Shaikh, A. A., Baishya, K. K.: On concircular structure spacetimes. J. Math. Stat. 1 (2005), 129–132. DOI 10.3844/jmssp.2005.129.132 | MR 2197611 | Zbl 1142.53326
[37] Shaikh, A. A., Baishya, K. K.: On concircular structure spacetimes II. American J. Appl. Sci. 3, 4 (2006), 1790–1794. DOI 10.3844/ajassp.2006.1790.1794 | MR 2220732
[38] Shaikh, A. A., Basu, T., Eyasmin, S.: On locally $\phi $-symmetric $(LCS)_n$-manifolds. Int. J. Pure Appl. Math. 41, 8 (2007), 1161–1170. MR 2384602 | Zbl 1136.53030
[39] Shaikh, A. A., Basu, T., Eyasmin, S.: On the existence of $\phi $-recurrent $(LCS)_n$-manifolds. Extracta Mathematicae 23, 1 (2008), 71–83. MR 2449997
[40] Shaikh, A. A., Binh, T. Q.: On weakly symmetric $(LCS)_n$-manifolds. J. Adv. Math. Studies 2 (2009), 75–90. MR 2583641 | Zbl 1180.53033
[41] Shaikh, A. A., Hui, S. K.: On generalized $\phi $-recurrent $(LCS)_n$-manifolds. AIP Conf. Proc. 1309 (2010), 419–429.
[42] Shaikh, A. A., Matsuyama, Y., Hui, S. K.: On invariant submanifold of $(LCS)_n$-manifolds. J. Egyptian Math. Soc. 24 (2016), 263–269. DOI 10.1016/j.joems.2015.05.008 | MR 3488908
[43] Sharma, R.: Second order parallel tensor in real and complex space forms. International J. Math. and Math. Sci. 12 (1989), 787–790. MR 1024982 | Zbl 0696.53012
[44] Sharma, R.: Certain results on k-contact and $(k,\mu )$-contact manifolds. J. of Geom. 89 (2008), 138–147. DOI 10.1007/s00022-008-2004-5 | MR 2457028 | Zbl 1175.53060
[45] Tripathi, M. M.: Ricci solitons in contact metric manifolds. arxiv:0801.4221 [Math.DG] 2008 (2008), 1–9.
[46] Yano, K.: Concircular geometry I, concircular transformations. Proc. Imp. Acad. Tokyo 16 (1940), 195–200. DOI 10.3792/pia/1195579139 | MR 0003113
Partner of
EuDML logo