Previous |  Up |  Next

Article

Keywords:
almost Kenmotsu manifold; Reeb vector field; minimal vector field; harmonic vector field; Lie group
Summary:
A necessary and sufficient condition for the Reeb vector field of a three dimensional non-Kenmotsu almost Kenmotsu manifold to be minimal is obtained. Using this result, we obtain some classifications of some types of $(k,\mu ,\nu )$-almost Kenmotsu manifolds. Also, we give some characterizations of the minimality of the Reeb vector fields of $(k,\mu ,\nu )$-almost Kenmotsu manifolds. In addition, we prove that the Reeb vector field of an almost Kenmotsu manifold with conformal Reeb foliation is minimal.
References:
[1] Blair, D. E.: Riemannian Geometry of Contact and Symplectic Manifolds. Progress in Mathematics 203, Birkhäuser, Boston (2010). DOI 10.1007/978-0-8176-4959-3 | MR 2682326 | Zbl 1246.53001
[2] Boeckx, E., Vanhecke, L.: Harmonic and minimal vector fields on tangent and unit tangent bundles. Differ. Geom. Appl. 13 (2000), 77-93. DOI 10.1016/S0926-2245(00)00021-8 | MR 1775222 | Zbl 0973.53053
[3] Cho, J. T., Kimura, M.: Reeb flow symmetry on almost contact three-manifolds. Differ. Geom. Appl. 35 (2014), 266-273. DOI 10.1016/j.difgeo.2014.05.002 | MR 3254308 | Zbl 1319.53094
[4] Dileo, G., Pastore, A. M.: Almost Kenmotsu manifolds and local symmetry. Bull. Belg. Math. Soc. Simon Stevin 14 (2007), 343-354. DOI 10.36045/bbms/1179839227 | MR 2341570 | Zbl 1148.53034
[5] Dileo, G., Pastore, A. M.: Almost Kenmotsu manifolds and nullity distributions. J. Geom. 93 (2009), 46-61. DOI 10.1007/s00022-009-1974-2 | MR 2501208 | Zbl 1204.53025
[6] Dileo, G., Pastore, A. M.: Almost Kenmotsu manifolds with a condition of $\eta$-parallelism. Differ. Geom. Appl. 27 (2009), 671-679. DOI 10.1016/j.difgeo.2009.03.007 | MR 2567845 | Zbl 1183.53024
[7] Gil-Medrano, O.: Relationship between volume and energy of vector fields. Differ. Geom. Appl. 15 (2001), 137-152. DOI 10.1016/S0926-2245(01)00053-5 | MR 1857559 | Zbl 1066.53068
[8] Gil-Medrano, O., Llinares-Fuster, E.: Minimal unit vector fields. Tohoku Math. J., II. 54 (2002), 71-84. DOI 10.2748/tmj/1113247180 | MR 1878928 | Zbl 1006.53053
[9] Gluck, H., Ziller, W.: On the volume of a unit vector field on the three-sphere. Comment. Math. Helv. 61 (1986), 177-192. DOI 10.1007/BF02621910 | MR 0856085 | Zbl 0605.53022
[10] González-Dávila, J. C., Vanhecke, L.: Examples of minimal unit vector fields. Ann. Global Anal. Geom. 18 (2000), 385-404. DOI 10.1023/A:1006788819180 | MR 1795104 | Zbl 1005.53026
[11] González-Dávila, J. C., Vanhecke, L.: Minimal and harmonic characteristic vector fields on three-dimensional contact metric manifolds. J. Geom. 72 (2001), 65-76. DOI 10.1007/s00022-001-8570-4 | MR 1891456 | Zbl 1005.53039
[12] González-Dávila, J. C., Vanhecke, L.: Invariant harmonic unit vector fields on Lie groups. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 5 (2002), 377-403. MR 1911197 | Zbl 1097.53033
[13] Janssens, D., Vanhecke, L.: Almost contact structures and curvature tensors. Kodai Math. J. 4 (1981), 1-27. DOI 10.2996/kmj/1138036310 | MR 0615665 | Zbl 0472.53043
[14] Kenmotsu, K.: A class of almost contact Riemannian manifolds. Tohoku Math. J., II. Ser. 24 (1972), 93-103. DOI 10.2748/tmj/1178241594 | MR 0319102 | Zbl 0245.53040
[15] Koufogiorgos, T., Markellos, M., Papantoniou, V. J.: The harmonicity of the Reeb vector field on contact metric 3-manifolds. Pac. J. Math. 234 (2008), 325-344. DOI 10.2140/pjm.2008.234.325 | MR 2373452 | Zbl 1154.53052
[16] Milnor, J. W.: Curvature of left invariant metrics on Lie groups. Adv. Math. 21 (1976), 293-329. DOI 10.1016/S0001-8708(76)80002-3 | MR 0425012 | Zbl 0341.53030
[17] Olszak, Z.: Local conformal almost cosymplectic manifolds. Colloq. Math. 57 (1989), 73-87. DOI 10.4064/cm-57-1-73-87 | MR 1028604 | Zbl 0702.53025
[18] Pastore, A. M., Saltarelli, V.: Almost Kenmotsu manifolds with conformal Reeb foliation. Bull. Belg. Math. Soc. Simon Stevin 18 (2011), 655-666. DOI 10.36045/bbms/1320763128 | MR 2907610 | Zbl 1237.53031
[19] Pastore, A. M., Saltarelli, V.: Generalized nullity distributions on almost Kenmotsu manifolds. Int. Electron. J. Geom. 4 (2011), 168-183. MR 2929587 | Zbl 1308.53118
[20] Perrone, D.: Harmonic characteristic vector fields on contact metric three-manifolds. Bull. Aust. Math. Soc. 67 (2003), 305-315. DOI 10.1017/S0004972700033773 | MR 1972720 | Zbl 1034.53050
[21] Perrone, D.: Almost contact metric manifolds whose Reeb vector field is a harmonic section. Acta Math. Hung. 138 (2013), 102-126. DOI 10.1007/s10474-012-0228-1 | MR 3015965 | Zbl 1299.53132
[22] Perrone, D.: Minimal Reeb vector fields on almost cosymplectic manifolds. Kodai Math. J. 36 (2013), 258-274. DOI 10.2996/kmj/1372337517 | MR 3081246 | Zbl 1277.53083
[23] Saltarelli, V.: Three-dimensional almost Kenmotsu manifolds satisfying certain nullity conditions. Bull. Malays. Math. Sci. Soc. 38 (2015), 437-459. DOI 10.1007/s40840-014-0029-5 | MR 3323720 | Zbl 1317.53044
[24] Vergara-Diaz, E., Wood, C. M.: Harmonic almost contact structures. Geom. Dedicata 123 (2006), 131-151. DOI 10.1007/s10711-006-9112-x | MR 2299730 | Zbl 1118.53043
Partner of
EuDML logo