Previous |  Up |  Next

Article

Keywords:
finite group action; prism 3-manifold; equivalence of actions; orbifold; Klein four-group
Summary:
We describe the finite group actions, up to equivalence, which can act on the orbifold $\Sigma(2,2,2)$, and their quotient types. This is then used to consider actions on prism manifolds $M(b,d)$ which preserve a longitudinal fibering, but do not leave any Heegaard Klein bottle invariant. If $\varphi\colon G\rightarrow \text{Homeo} (M(b,d))$ is such an action, we show that $M(b,d) = M(b,2)$ and $M(b,2)/\varphi$ fibers over a certain collection of 2-orbifolds with positive Euler characteristic which are covered by $\Sigma(2,2,2)$. For the standard actions, we compute the fundamental group of $M(b,2)/\varphi$ and indicate when it is a Seifert fibered manifold.
References:
[1] Dummit D., Foote R.: Abstract Algebra. Wiley, Hoboken, NJ, 2004. MR 2286236 | Zbl 1037.00003
[2] Kalliongis J., Ohashi R.: Finite group actions on prism manifolds which preserve a Heegaard Klein bottle. Kobe J. Math. 28 (2011), no. 1, 69–89. MR 2907136 | Zbl 1253.57011
[3] Kalliongis J., Ohashi R.: Classifying non-splitting fiber preserving actions on prism manifolds. Topology Appl. 178 (2014), 200–218. DOI 10.1016/j.topol.2014.09.010 | MR 3276737 | Zbl 1306.57014
[4] Kalliongis J., Ohashi R.: Finite actions on the $2$-sphere and the projective plane. preprint.
[5] McCullough D.: Isometries of elliptic $3$-manifolds. J. London Math. Soc. 65 (2002), no. 1, 167–182. DOI 10.1112/S0024610701002782 | MR 1875143 | Zbl 1012.57023
[6] Orlik P.: Seifert Manifolds. Lecture Notes in Mathematics, 291, Springer, Berlin-New York, 1972. MR 0426001 | Zbl 0263.57001
[7] Scott P.: The geometries of $3$-manifolds. Bull. London Math. Soc. 5 (1983), 401–48. DOI 10.1112/blms/15.5.401 | MR 0705527 | Zbl 0662.57001
Partner of
EuDML logo