[1] Bourgain J.:
New Classes of $\mathcal{L}_p$-spaces. Lecture Notes in Mathematics, 889, Springer, Berlin-New York, 1981.
MR 0639014
[3] Bessaga C., Pelczynski A.:
On bases and unconditional convergence of series in Banach spaces. Studia Math. 17 (1958), 151–174.
MR 0115069 |
Zbl 0084.09805
[5] Diestel J.:
Sequences and Series in Banach Spaces. Graduate Texts in Mathematics, 92, Springer, Berlin, 1984.
MR 0737004
[7] Diestel J., Uhl J.J., Jr.:
Vector measures. Math. Surveys, 15, American Mathematical Society, Providence, RI, 1977.
MR 0453964 |
Zbl 0521.46035
[8] Cembranos P., Mendoza J.:
Banach Spaces of Vector-Valued Functions. Lecture Notes in Mathematics, 1676, Springer, Berlin, 1997.
MR 1489231 |
Zbl 0902.46017
[13] Emmanuele G.:
The (BD) property in $L^1(\mu,E)$. Indiana Univ. Math. J. 36 (1987), 229–230.
MR 0877000
[14] Emmanuele G.:
A dual characterization of Banach spaces not containing $\ell^1$. Bull. Polish Acad. Sci. Math. 34 (1986), 155–160.
MR 0861172
[15] Fabian M., Habla P., Hájek P., Montesinos V., Zizler V.:
Banach Space Theory. The Basis for Linear and Nonlinear Analysis. CMS Books in Mathematics, Springer, New York, 2011.
MR 2766381
[16] Fabian M.J.:
Gâteaux Differentiability of Convex Functions and Topology. Weak Asplund Spaces. Canad. Math. Soc. Series of Monographs and Advanced Texts, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1997.
MR 1461271 |
Zbl 0883.46011
[21] Hagler J., Odell E.:
A Banach space not containing $\ell_1$, whose dual ball is not $weak^*$ sequentially compact. Illinois J. Math 22 (1978), 290–294.
MR 0482087 |
Zbl 0391.46015
[22] Haydon R., Levy M., Odell E.:
On sequences without weak$^*$ convergent convex block subsequences. Proc. Amer. Soc. 101 (1987), 94–98.
MR 0883407
[25] Lindenstrauss J., Tzafriri L.:
Classical Banach Spaces II. Ergebnisse der Mathematik und ihrer Grenzgebiete, 97, Springer, Berlin-Heidelberg-New York, 1979.
MR 0540367 |
Zbl 0403.46022
[27] Pełczyński A.:
Banach spaces on which every unconditionally converging operator is weakly compact. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 641–648.
MR 0149295 |
Zbl 0107.32504
[28] Pełczyński A., Semadeni Z.:
Spaces of continuous functions III. Studia Math. 18 (1959), 211–222.
MR 0092942 |
Zbl 0091.27803
[29] Ruess W.:
Duality and geometry of spaces of compact operators. Functional Analysis: Surveys and Recent Results III. Proc. 3rd Paderborn Conference 1983, North-Holland Math. Studies, 90, North-Holland, Amsterdam, 1984, pp. 59–78.
MR 0761373 |
Zbl 0573.46007
[30] Ryan R.A.:
Intoduction to Tensor Products of Banach Spaces. Springer, London, 2002.
MR 1888309
[31] Schlumprecht T.:
Limited sets in Banach spaces. Dissertation, Munich, 1987.
Zbl 0689.46005