Previous |  Up |  Next

Article

Keywords:
G-ring; pullback; trivial extension
Summary:
In this paper, we are concerned with G-rings. We generalize the Kaplansky's theorem to rings with zero-divisors. Also, we assert that if $R \subseteq T$ is a ring extension such that $mT\subseteq R$ for some regular element $m$ of $T$, then $T$ is a G-ring if and only if so is $R$. Also, we examine the transfer of the G-ring property to trivial ring extensions. Finally, we conclude the paper with illustrative examples discussing the utility and limits of our results.
References:
[1] Adams J.C.: Rings with a finitely generated total quotient ring. Canad. Math. Bull. 17 (1974), 1–4. DOI 10.4153/CMB-1974-001-x | MR 0354639 | Zbl 0295.13004
[2] Bakkari C., Kabbaj S., Mahdou N.: Trivial extensions defined by Prüfer conditions. J. Pure Appl. Algebra 214 (2010), no. 1, 53–60. DOI 10.1016/j.jpaa.2009.04.011 | MR 2561766 | Zbl 1175.13008
[3] Bourbaki N.: Commutative Algebra. Addison-Wesley, Reading, 1972. Zbl 1107.13002
[4] Brewer J.W., Rutter E.A.: $D+M$ constructions with general overrings. Michigan Math. J. 23 (1976), 33–42. DOI 10.1307/mmj/1029001619 | MR 0401744 | Zbl 0318.13007
[5] Cahen P.J.: Couple d'anneaux partageant un idéal. Arch. Math. 51 (1988), 505–514. DOI 10.1007/BF01261971 | MR 0973725
[6] Dobbs D.E.: G-Domain pairs. Internat. J. Commutative Rings 1 (2002), no. 2, 71–75. MR 2037658 | Zbl 1072.13012
[7] Dobbs D.E., Ishikawa T.: On seminormal underrings. Tokyo J. Math. 10 (1987), 157–159. DOI 10.3836/tjm/1270141800 | MR 0899480 | Zbl 0629.13002
[8] Dobbs D.E., Papick I.: When is $D+M$ coherent?. Proc. Amer. Math. Soc. 56 (1976), 51–54. MR 0409448 | Zbl 0329.13014
[9] Fontana M.: Topologically defined classes of commutative rings. Ann. Mat. Pura Appl. 123 (1980), 331–355. DOI 10.1007/BF01796550 | MR 0581935 | Zbl 0443.13001
[10] Gilmer R.: The pseudo-radical of a commutative ring. Pacific J. Math. 19 (1966), 275–284. DOI 10.2140/pjm.1966.19.275 | MR 0204452 | Zbl 0147.01501
[11] Huckaba J.A.: Commutative Rings with Zero Divisors. Marcel Dekker, New York-Basel, 1988. MR 0938741 | Zbl 0637.13001
[12] Kaplansky I.: Commutative Rings. revised edition, University of Chicago Press, Chicago, 1974. MR 0345945 | Zbl 0296.13001
[13] Kabbaj S., Mahdou N.: Trivial extensions of local rings and a conjecture of Costa. Lecture Notes in Pure and Appl. Math., 231, Dekker, New York, 2003, pp. 301–311. MR 2029833 | Zbl 1086.13003
[14] Kabbaj S., Mahdou N.: Trivial extensions defined by coherent-like conditions. Comm. Algebra 32 (2004), no. 10, 3937-3953. DOI 10.1081/AGB-200027791 | MR 2097439 | Zbl 1068.13002
[15] Mahdou N., Mimouni A, Moutui M.A.: On almost valuation and almost Bézout rings. Comm. Algebra 43 (2015), no. 1, 297–308. DOI 10.1080/00927872.2014.897586 | MR 3240420 | Zbl 1315.13035
Partner of
EuDML logo