Previous |  Up |  Next

Article

Keywords:
small ideal; small intersection graph; clique number; independence number; domination number; planar property
Summary:
In this paper, a new kind of graph on a commutative ring is introduced and investigated. Small intersection graph of a ring $R$, denoted by $G(R)$, is a graph with all non-small proper ideals of $R$ as vertices and two distinct vertices $I$ and $J$ are adjacent if and only if $I\cap J$ is not small in $R$. In this article, some interrelation between the graph theoretic properties of this graph and some algebraic properties of rings are studied. We investigated the basic properties of the small intersection graph as diameter, girth, clique number, cut vertex, planar property and independence number. Further, it is shown that the independence number of a small graph of a ring $R$ is equal to the number of its maximal ideals and the domination number of small graph is at most 2.
References:
[1] Akbari S., Tavallaee H.A., Ghezelahmad S. Khalashi: Intersection graph of submodules of a module. J. Algebra Appl. 11 (2012), 1250019. DOI 10.1142/S0219498811005452 | MR 2900889
[2] Anderson D.F., Livingston P.S.: The zero-divisor graph of a commutative rings. J. Algebra 217 (1999), 434–447. DOI 10.1006/jabr.1998.7840 | MR 1700509
[3] Beck I.: Coloring of commutative rings. J. Algebra 116 (1988), 208–226. DOI 10.1016/0021-8693(88)90202-5 | MR 0944156 | Zbl 0654.13001
[4] Bondy J.A., Murty U.S.R.: Graph Theory. Graduate Texts in Mathematics, 244, Springer, New York, 2008. MR 2368647 | Zbl 1134.05001
[5] Bosak J.: The graphs of semigroups. in Theory of Graphs and its Applications, Academic Press, New York, 1964, pp. 119–125. MR 0173718 | Zbl 0161.20901
[6] Chakrabarty I., Ghosh S., Mukherjee T.K., Sen M.K.: Intersection graphs of ideals of rings. Discrete Math. 309 (2009), 5381–5392. DOI 10.1016/j.disc.2008.11.034 | MR 2548554 | Zbl 1193.05087
[7] Chelvam T., Asir T.: The intersection graph of gamma sets in the total graph I. J. Algebra Appl. 12 (2013), no. 4, 1250198, 18 pp. DOI 10.1142/S0219498812501988 | MR 3037273
[8] Csákány B., Pollák G.: The graph of subgroups of a finite group. Czechoslovak Math. J. 19 (1969), 241–247. MR 0249328
[9] Haynes T.W., Hedetniemi S.T., Slater P.J. (eds.): Fundamentals of Domination in Graphs. Marcel Dekker, Inc., New York, NY, 1998. MR 1605684 | Zbl 0890.05002
[10] Jafari S.H., Jafari Rad N.: Domination in the intersection graphs of rings and modules. Ital. J. Pure Appl. Math. 28 (2011), 19–22. MR 2922478 | Zbl 1239.13014
[11] Lam T.Y.: A First Course in Non-commutative Rings. Graduate Texts in Mathematics, 131, Springer, Berlin-Heidelberg-New York, 1991. DOI 10.1007/978-1-4684-0406-7 | MR 1125071
[12] Pucanović Z.S., Radovanović M., Aleksandra E.L.: On the genus of the intersection graph of ideals of a commutative ring. J. Algebra Appl. 13 (2014), no. 5, 1350155, 20 pp. DOI 10.1142/S0219498813501557 | MR 3190084 | Zbl 1290.13004
[13] Pucanović Z.S., Petrović Z.Z.: Toroidality of intersection graphs of ideals of commutative rings. Graphs Combin. 30 (2014), no. 3, 707–716. DOI 10.1007/s00373-013-1292-1 | MR 3195810 | Zbl 1291.13014
[14] Yaraneri E.: Intersection graph of a module. J. Algebra Appl. 12 (2013), no. 5, 1250218, 30 pp. DOI 10.1142/S0219498812502180 | MR 3055575
[15] Wisbauer R.: Foundations of Module and Ring Theory. Gordon and Breach Science Publishers, Philadelphia, 1991. MR 1144522 | Zbl 0746.16001
Partner of
EuDML logo