[1] Allemandi, G., Francaviglia, M., Raiteri, M.:
Covariant charges in Chern-Simons $AdS3$ gravity. Classical Quantum Gravity, 20, 3, 2003, 483-506,
MR 1957170
[3] Bashkirov, D., Giachetta, G., Mangiarotti, L., Sardanashvily, G.:
Noether's second theorem for BRST symmetries. J. Math. Phys., 46, 5, 2005, 053517, 23 pp..
DOI 10.1063/1.1899988 |
MR 2143026 |
Zbl 1110.58010
[4] Bashkirov, D., Giachetta, G., Mangiarotti, L., Sardanashvily, G.:
Noether's second theorem in a general setting reducible gauge theories. J. Phys., A38, 2005, 5329-5344,
MR 2148427 |
Zbl 1070.70014
[5] Bashkirov, D., Giachetta, G., Mangiarotti, L., Sardanashvily, G.:
The antifield Koszul-Tate complex of reducible Noether identities. J. Math. Phys., 46, 10, 2005, 103513, 19 pp..
DOI 10.1063/1.2054647 |
MR 2178613 |
Zbl 1111.70026
[7] Borowiec, A., Ferraris, M., Francaviglia, M., Palese, M.:
Conservation laws for non-global Lagrangians. Univ. Iagel. Acta Math., 41, 2003, 319-331,
MR 2084774 |
Zbl 1060.70034
[9] Cattafi, F., Palese, M., Winterroth, E.:
Variational derivatives in locally Lagrangian field theories and Noether--Bessel-Hagen currents. Int. J. Geom. Methods Mod. Phys., 13, 8, 2016, 1650067.
MR 3544984 |
Zbl 1357.58023
[10] Dedecker, P., Tulczyjew, W. M.:
Spectral sequences and the inverse problem of the calculus of variations. Lecture Notes in Mathematics, 836, 1980, 498-503, Springer--Verlag,
DOI 10.1007/BFb0089761 |
MR 0607719 |
Zbl 0482.49027
[11] Eck, D. J.:
Gauge-natural bundles and generalized gauge theories. Mem. Amer. Math. Soc., 247, 1981, 1-48,
MR 0632164 |
Zbl 0493.53052
[12] Ferraris, M., Francaviglia, M., Raiteri, M.:
Conserved Quantities from the Equations of Motion (with applications to natural and gauge natural theories of gravitation). Class.Quant.Grav., 20, 2003, 4043-4066,
DOI 10.1088/0264-9381/20/18/312 |
MR 2017333
[14] Francaviglia, M., Palese, M., Vitolo, R.:
Symmetries in finite order variational sequences. Czech. Math. J., 52, 1, 2002, 197-213,
DOI 10.1023/A:1021735824163 |
MR 1885465 |
Zbl 1006.58014
[15] Francaviglia, M., Palese, M., Vitolo, R.:
The Hessian and Jacobi Morphisms for Higher Order Calculus of Variations. Diff. Geom. Appl., 22, 1, 2005, 105-120,
DOI 10.1016/j.difgeo.2004.07.008 |
MR 2106379 |
Zbl 1065.58010
[16] Francaviglia, M., Palese, M., Winterroth, E.:
Locally variational invariant field equations and global currents: Chern-Simons theories. Commun. Math., 20, 1, 2012, 13-22,
MR 3001628 |
Zbl 1344.70047
[17] Francaviglia, M., Palese, M., Winterroth, E.:
Variationally equivalent problems and variations of Noether currents. Int. J. Geom. Meth. Mod. Phys., 10, 1, 2013, 1220024.
MR 2998326 |
Zbl 1271.58008
[18] Francaviglia, M., Palese, M., Winterroth, E.: Cohomological obstructions in locally variational field theories. Jour. Phys. Conf. Series, 474, 2013, 012017.
[19] Giachetta, G., Mangiarotti, L., Sardanashvily, G.:
Lagrangian supersymmetries depending on derivatives. Global analysis and cohomology. Comm. Math. Phys., 259, 1, 2005, 103-128,
DOI 10.1007/s00220-005-1297-6 |
MR 2169970 |
Zbl 1086.58008
[20] Kosmann-Schwarzbach, Y.:
The Noether Theorems; translated from French by Bertram E. Schwarzbach. Sources and Studies in the History of Mathematics and Physical Sciences, Springer, New York , 2011,
MR 2761345
[21] Krupka, D.: Some Geometric Aspects of Variational Problems in Fibred Manifolds. Folia Fac. Sci. Nat. UJEP Brunensis, 14, 1973, 1-65,
[22] Krupka, D.:
Variational Sequences on Finite Order Jet Spaces. Differential Geometry and its Applications, Proc. Conf., Brno, Czechoslovakia, 1989, 236-254, World Scientific,
MR 1062026
[23] Krupka, D., Krupková, O., Prince, G., Sarlet, W.:
Contact symmetries of the Helmholtz form. Differential Geom. Appl., 25, 5, 2007, 518-542,
DOI 10.1016/j.difgeo.2007.06.003 |
MR 2351428 |
Zbl 1354.58012
[24] Noether, E.: Invariante Variationsprobleme. Nachr. Ges. Wiss. Gött., Math. Phys. Kl., II, 1918, 235-257,
[25] Palese, M., Rossi, O., Winterroth, E., Musilová, J.:
Variational sequences, representation sequences and applications in physics. SIGMA, 12, 2016, 045, 45 pages.
MR 3492865 |
Zbl 1347.70043
[27] Palese, M., Winterroth, E.:
Global Generalized Bianchi Identities for Invariant Variational Problems on Gauge-natural Bundles. Arch. Math. (Brno), 41, 3, 2005, 289-310,
MR 2188385 |
Zbl 1112.58005
[28] Palese, M., Winterroth, E.: Noether Theorems and Reality of Motion. Proc. Marcel Grossmann Meeting 2015, 2016, World Scientific, to appear.
[29] Palese, M., Winterroth, E.:
Variational Lie derivative and cohomology classes. AIP Conf. Proc., 1360, 2011, 106-112,
Zbl 1276.70012
[30] Palese, M., Winterroth, E.:
Topological obstructions in Lagrangian field theories, with an application to $3$D Chern--Simons gauge theory. preprint submitted.
MR 3605665
[31] Sardanashvily, G.: Noether conservation laws issue from the gauge invariance of an Euler-Lagrange operator, but not a Lagrangian. arXiv:math-ph/0302012 , 2003,
[33] Sardanashvily, G.:
Noether's theorems. Applications in mechanics and field theory. Atlantis Studies in Variational Geometry, 3, 2016, Atlantis Press, Paris, xvii+297 pp..
MR 3467590 |
Zbl 1357.58002
[36] Vinogradov, A. M.:
On the algebro-geometric foundations of Lagrangian field theory. Soviet Math. Dokl., 18, 1977, 1200-1204,
MR 0501142 |
Zbl 0403.58005