Previous |  Up |  Next

Article

Keywords:
Finsler geometry; line bundle; geodesics
Summary:
We define a canonical line bundle over the slit tangent bundle of a manifold, and define a Lagrangian section to be a homogeneous section of this line bundle. When a regularity condition is satisfied the Lagrangian section gives rise to local Finsler functions. For each such section we demonstrate how to construct a canonically parametrized family of geodesics, such that the geodesics of the local Finsler functions are reparametrizations.
References:
[1] Chern, S.-S.: Finsler geometry is just Riemannian geometry without the quadratic restriction. Not. A.M.S., 43, 9, 1996, 959-963, MR 1400859 | Zbl 1044.53512
[2] Crampin, M.: Some remarks on the Finslerian version of Hilbert's Fourth Problem. Houston J. Math., 37, 2, 2011, 369-391, MR 2794554 | Zbl 1228.53085
[3] Crampin, M., Mestdag, T., Saunders, D.J.: The multiplier approach to the projective Finsler metrizability problem. Diff. Geom. Appl., 30, 6, 2012, 604-621, DOI 10.1016/j.difgeo.2012.07.004 | MR 2996856 | Zbl 1257.53105
[4] Crampin, M., Saunders, D.J.: Projective connections. J. Geom. Phys., 57, 2, 2007, 691-727, DOI 10.1016/j.geomphys.2006.03.007 | MR 2271212 | Zbl 1114.53014
[5] Hebda, J., Roberts, C.: Examples of Thomas--Whitehead projective connections. Diff. Geom. Appl., 8, 1998, 87-104, MR 1601526 | Zbl 0897.53009
[6] Massa, E., Pagani, E., Lorenzoni, P.: On the gauge structure of classical mechanics. Transport Theory and Statistical Physics, 29, 1--2, 2000, 69-91, DOI 10.1080/00411450008205861 | MR 1774182 | Zbl 0968.70014
[7] Roberts, C.: The projective connections of T.Y. Thomas and J.H.C. Whitehead applied to invariant connections. Diff. Geom. Appl., 5, 1995, 237-255, DOI 10.1016/0926-2245(95)92848-Y | MR 1353058 | Zbl 0833.53023
[8] Thomas, T.Y.: A projective theory of affinely connected manifolds. Math. Zeit., 25, 1926, 723-733, DOI 10.1007/BF01283864 | MR 1544836
Partner of
EuDML logo