Previous |  Up |  Next

Article

Keywords:
copula; quasi-copula; transformation of quasi-copulas; imprecise copula
Summary:
Six different functions measuring the defect of a quasi-copula, i. e., how far away it is from a copula, are discussed. This is done by means of extremal non-positive volumes of specific rectangles (in a way that a zero defect characterizes copulas). Based on these defect functions, six transformations of quasi-copulas are investigated which give rise to six different partitions of the set of all quasi-copulas. For each of these partitions, each equivalence class contains exactly one copula being a fixed point of the transformation under consideration. Finally, an application to the construction of so-called imprecise copulas is given.
References:
[1] Alsina, C., Frank, M. J., Schweizer, B.: Associative Functions: Triangular Norms and Copulas. World Scientific, Singapore 2006. DOI 10.1142/9789812774200 | MR 2222258 | Zbl 1100.39023
[2] Alsina, C., Nelsen, R. B., Schweizer, B.: On the characterization of a class of binary operations on distribution functions. Statist. Probab. Lett. 17 (1993), 85-89. DOI 10.1016/0167-7152(93)90001-y | MR 1223530 | Zbl 0798.60023
[3] Alvoni, E., Papini, P. L., Spizzichino, F.: On a class of transformations of copulas and quasi-copulas. Fuzzy Sets and Systems 160 (2009), 334-343. DOI 10.1016/j.fss.2008.03.025 | MR 2473107 | Zbl 1175.62045
[4] Birkhoff, G.: Lattice Theory. American Mathematical Society, Providence 1973. MR 0227053 | Zbl 0537.06001
[5] Clifford, A. H.: Naturally totally ordered commutative semigroups. Amer. J. Math. 76 (1954), 631-646. DOI 10.2307/2372706 | MR 0062118
[6] Baets, B. De: Quasi-copulas: A bridge between fuzzy set theory and probability theory. In: Integrated Uncertainty Management and Applications. Selected Papers Based on the Presentations at the 2010 International Symposium on Integrated Uncertainty Managment and Applications (IUM 2010) (V.-N. Huynh, Y. Nakamori, J. Lawry, and M. Inuiguchi, eds.), Ishikawa 2010, p. 55. Springer, Berlin 2010. DOI 10.1007/978-3-642-11960-6_6
[7] Baets, B. De, Meyer, H. De, D{í}az, S.: On an idempotent transformation of aggregation functions and its application on absolutely continuous {A}rchimedean copulas. Fuzzy Sets and Systems 160 (2009), 733-751. DOI 10.1016/j.fss.2008.04.001 | MR 2493272 | Zbl 1175.62046
[8] Baets, B. De, Janssens, S., Meyer, H. De: On the transitivity of a parametric family of cardinality-based similarity measures. Internat. J. Approx. Reason. 50 (2009), 104-116. DOI 10.1016/j.ijar.2008.03.006 | MR 2519040 | Zbl 1191.68706
[9] Schuymer, B. De, Meyer, H. De, Baets, B. De: Cycle-transitive comparison of independent random variables. J. Multivariate Anal. 96 (2005), 352-373. DOI 10.1016/j.jmva.2004.10.011 | MR 2204983 | Zbl 1087.60018
[10] D{í}az, S., Montes, S., Baets, B. De: Transitivity bounds in additive fuzzy preference structures. IEEE Trans. Fuzzy Systems 15 (2007), 275-286. DOI 10.1109/tfuzz.2006.880004
[11] Dolati, A., Mohseni, S., Úbeda-Flores, M.: Some results on a transformation of copulas and quasi-copulas. Inform. Sci. 257 (2014), 176-182. DOI 10.1016/j.ins.2013.09.023 | MR 3131786 | Zbl 1321.62053
[12] Durante, F., Sarkoci, P., Sempi, C.: Shuffles of copulas. J. Math. Anal. Appl. 352 (2009), 914-921. DOI 10.1016/j.jmaa.2008.11.064 | MR 2501937 | Zbl 1160.60307
[13] Durante, F., Sempi, C.: Copula and semicopula transforms. DOI 10.1155/ijmms.2005.645 | Zbl 1078.62055
[14] Durante, F., Sempi, C.: Principles of Copula Theory. CRC Press, Boca Raton 2015. DOI 10.1201/b18674 | MR 3443023
[15] Fuchs, S., Schmidt, K. D.: Bivariate copulas: transformations, asymmetry and measures of concordance. Kybernetika 50 (2014), 109-125. DOI 10.14736/kyb-2014-1-0109 | MR 3195007
[16] Genest, C., Quesada-Molina, J. J., Rodríguez-Lallena, J. A., Sempi, C.: A characterization of quasi-copulas. J. Multivariate Anal. 69 (1999), 193-205. DOI 10.1006/jmva.1998.1809 | MR 1703371 | Zbl 0935.62059
[17] Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press, Cambridge 2009. DOI 10.1017/cbo9781139644150 | MR 2538324 | Zbl 1206.68299
[18] Hájek, P., Mesiar, R.: On copulas, quasicopulas and fuzzy logic. Soft Computing 12 (2008), 1239-1243. DOI 10.1007/s00500-008-0286-z | Zbl 1152.03018
[19] Janssens, S., Baets, B. De, Meyer, H. De: Bell-type inequalities for commutative quasi-copulas. Fuzzy Sets and Systems 148 (2004), 263-278. DOI 10.1016/j.fss.2004.03.015 | MR 2100199
[20] Kalická, J.: On some construction methods for 1-Lipschitz aggregation functions. Fuzzy Sets and Systems 160 (2009), 726-732. DOI 10.1016/j.fss.2008.06.017 | MR 2493271 | Zbl 1175.62047
[21] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000. DOI 10.1007/978-94-015-9540-7 | MR 1790096 | Zbl 1087.20041
[22] Klement, E. P., Mesiar, R., Pap, E.: Invariant copulas. Kybernetika 38 (2002), 275-285. MR 1944309 | Zbl 1264.62045
[23] Klement, E. P., Mesiar, R., Pap, E.: Transformations of copulas. Kybernetika 41 (2005), 425-436. MR 2180355 | Zbl 1243.62019
[24] Ling, C. M.: Representation of associative functions. Publ. Math. Debrecen 12 (1965), 189-212. MR 0190575 | Zbl 0137.26401
[25] Montes, I., Miranda, E., Montes, S.: Decision making with imprecise probabilities and utilities by means of statistical preference and stochastic dominance. European J. Oper. Res. 2342 (2014), 209-220. DOI 10.1016/j.ejor.2013.09.013 | MR 3141610 | Zbl 1305.91106
[26] Montes, I., Miranda, E., Pelessoni, R., Vicig, P.: Sklar's theorem in an imprecise setting. Fuzzy Sets and Systems 278 (2015), 48-66. DOI 10.1016/j.fss.2014.10.007 | MR 3383206
[27] Nelsen, R. B.: An Introduction to Copulas. Second edition. Springer, New York 2006. DOI 10.1007/0-387-28678-0 | MR 2197664
[28] Nelsen, R. B., Quesada-Molina, J. J., Rodríguez-Lallena, J. A., Úbeda-Flores, M.: Some new properties of quasi-copulas. In: Distributions with Given Marginals and Statistical Modelling (C. M. Cuadras, J. Fortiana, and J. A. Rodríguez-Lallena, edis.), Kluwer Academic Publishers, Dordrecht 2002, pp. 187-194. DOI 10.1007/978-94-017-0061-0_20 | MR 2058992 | Zbl 1135.62339
[29] Nelsen, R. B., Úbeda-Flores, M.: The lattice-theoretic structure of sets of bivariate copulas and quasi-copulas. Comptes Rendus Mathematique 341 (2005), 583-586. DOI 10.1016/j.crma.2005.09.026 | MR 2182439 | Zbl 1076.62053
[30] Pelessoni, R., Vicig, P., Montes, I., Miranda, E.: Imprecise copulas and bivariate stochastic orders. In: Proc. EUROFUSE 2013, Oviedo 2013, pp. 217-224.
[31] Sainio, E., Turunen, E., Mesiar, R.: A characterization of fuzzy implications generated by generalized quantifiers. Fuzzy Sets and Systems 159 (2008), 491-499. DOI 10.1016/j.fss.2007.09.018 | MR 2388105 | Zbl 1176.03013
[32] Schweizer, B., Sklar, A.: Associative functions and abstract semigroups. Publ. Math. Debrecen 10 (1963), 69-81. MR 0170967
[33] Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. North-Holland, New York 1983. MR 0790314 | Zbl 0546.60010
[34] Sklar, A.: Fonctions de répartition à $n$ dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 (1959), 229-231. MR 0125600
[35] Sklar, A.: Random variables, joint distribution functions, and copulas. Kybernetika 9 (1973), 449-460. MR 0345164 | Zbl 0292.60036
[36] Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London 1991. MR 1145491 | Zbl 0732.62004
Partner of
EuDML logo