Previous |  Up |  Next

Article

Keywords:
control systems; homotopy of trajectories; covering semigroup
Summary:
It is well known that the class of invariant control systems is really relevant both from theoretical and practical point of view. This work was an attempt to connect an invariant systems on a Lie group $G$ with its covering space. Furthermore, to obtain algebraic properties of this set. Let $G$ be a Lie group with identity $e$ and $\Sigma \subset \mathfrak{g}$ a cone in the Lie algebra $\mathfrak{g}$ of $G$ that satisfies the Lie algebra rank condition. We use a formalism developed by Sussmann, to obtain an algebraic structure on the covering space $\mathbf{\Gamma }(\Sigma ,x),x\in G$ introduced by Colonius, Kizil and San Martin. This formalism provides a group $\widehat{G}(X)$ of exponential of Lie series and a subsemigroup $ \widehat{S}({X})\subset \widehat{G}(X)$ that parametrizes the space of controls by means of a map due to Chen, which assigns to each control a noncommutative formal power series. Then we prove that $\Gamma (\Sigma ,e)$ is the intersection of $\widehat{S}(X)$ with the congruence classes determined by the kernel of a homomorphism of $\widehat{S}(X)$.
References:
[1] Ayala, V.: Controllability of Nilpotent Systems. Banach Center Publications. Polish Academy of Sciences 32 (1995), 35-46. DOI 10.4064/bc106-0-3 | MR 1364418 | Zbl 0839.93018
[2] Ayala, V., Martin, L. San, Ribeiro, R.: Controllability on Sl(2,C) with restricted controls. SIAM J. Control Optim. 52 (2014), 2548-2567. DOI 10.1137/130943662 | MR 3252797
[3] Bonnard, B., Jurdjevic, V., Kupka, I., Sallet, G.: Transitivity of families of invariant vector fields on semi-direct product of Lie groups. Trans. Amer. Math. Soc. 271 (1982), 521-535. DOI 10.1090/s0002-9947-1982-0654849-4
[4] Brockett, R.: System theory on groups and coset spaces. SIAM J. Control 1 (1972), 265-284. DOI 10.1137/0310021 | MR 0315559
[5] Chen, K.: Integration of paths, geometric invariants and a generalized Baker-Hausdorff formula. Ann. Math. 65 (1975), 163-178. DOI 10.2307/1969671 | MR 0085251 | Zbl 0077.25301
[6] Colonius, F., Kizil, E., Martin, L. San: Covering space for monotonic homotopy of trajectories of control systems. J. Differential Equations 216 (2005), 324-353. DOI 10.1016/j.jde.2005.02.021 | MR 2162339
[7] Dubins, L.: On curves of minimal lengths with a constrains on average curvature and with prescribed initial and terminal positions and tangents. Am. J. Math. 79 (1957), 3, 497. DOI 10.2307/2372560
[8] Hilgert, J., Hofmann, K., Lawson, J.: Controllability of systems on a nilpotent Lie group. Beitrage Algebra Geometrie 20 (1985), 185-190. MR 0803388
[9] Isidori, A.: Nonlinear Control Systems. Springer-Verlag, 1995. DOI 10.1007/978-1-84628-615-5 | MR 1410988 | Zbl 0931.93005
[10] Jurdjevic, V.: Geometric Control Theory. Cambridge University Press, 1997. DOI 10.1017/cbo9780511530036 | MR 1425878 | Zbl 1138.93005
[11] Jurdjevic, V.: Optimal control problem on Lie groups: crossroads between geometry and mechanics. In: Geometry of Feedback and Optimal Control (B. Jakubczyk and W. Respondek, eds.), New York, Marcel Dekker 1997. MR 1493016
[12] Jurdjevic, V., Kupka, I.: Control systems on semi-simple Lie groups and their homogeneous spaces. Ann. Inst. Fourier, Grenoble 31 (1981), 151-179. DOI 10.5802/aif.853 | MR 0644347 | Zbl 0453.93011
[13] Jurdjevic, V., Sussmann, H.: Control systems on Lie groups. J. Differential Equations 12 (1972), 313-329. DOI 10.1016/0022-0396(72)90035-6 | MR 0331185 | Zbl 0237.93027
[14] Lobry, C.: Controlabilite des systemes non lineaires. SIAM J. Control Optim. 8 (1970), 4, 573-605. DOI 10.1137/0308042 | MR 0271979 | Zbl 0476.93015
[15] Ljapin, E.: Semigroups. Trans. Math. Monographs 3, American Mathematical Society 1963. DOI 10.1090/trans2/027/17 | MR 0167545
[16] Mittenhuber, D.: Controllability of systems on solvable Lie groups: the generic case. J. Dynam. Control Systems 7 (2001), 61-75. DOI 10.1023/a:1026697622549 | MR 1817330 | Zbl 1022.22006
[17] Sachkov, Y.L.: Controllability of right-invariant systems on solvable Lie groups. J. Dynam. Control Systems 3 (1997), 531-564. DOI 10.1007/bf02463282 | MR 1481626 | Zbl 0991.93015
[18] Sachkov, Y.L.: Controllability of invariant systems on Lie groups and homogeneous spaces. Dynamical systems 8, J. Math. Sci. (New York), 100 (2000), 4, 2355-2427. DOI 10.1007/s10958-000-0002-8 | MR 1776551 | Zbl 1073.93511
[19] Martin, L. San, Tonelli, P.: Semigroup actions on homogeneous spaces. Semigroup Forum 14 (1994), 1-30. MR 1301552
[20] Sussmann, H.: Lie brackets and local controllability: A sufficient condition for scalar-input systems. SIAM J. Control Optim. 21 (1983), 5, 686-713. DOI 10.1137/0321042 | MR 0710995 | Zbl 0523.49026
[21] Sussmann, H.: A general theorem on local controllability. SIAM J. Control Optim. 25 (1987), 158-194. DOI 10.1137/0325011 | MR 0872457 | Zbl 0629.93012
[22] Sussmann, H., Willems, C.: 300 years of optimal control: From the brachystochrone to the maximum principle. IEEE Constrol Systems Magazine 17 (1997), 3, 32-44. DOI 10.1109/37.588098 | Zbl 1014.49001
Partner of
EuDML logo