Previous |  Up |  Next

Article

Keywords:
solvable loop; inner mapping group; dicyclic group
Summary:
Let $G$ be a finite group with a dicyclic subgroup $H$. We show that if there exist $H$-connected transversals in $G$, then $G$ is a solvable group. We apply this result to loop theory and show that if the inner mapping group $I(Q)$ of a finite loop $Q$ is dicyclic, then $Q$ is a solvable loop. We also discuss a more general solvability criterion in the case where $I(Q)$ is a certain type of a direct product.
References:
[1] Carr J.G.: A solubility criterion for factorized groups. Arch. Math. 27 (1976), 225–231. DOI 10.1007/BF01224664 | MR 0417288
[2] Drápal A.: Orbits of inner mapping groups. Monatsh. Math. 134 (2002), 191–206. DOI 10.1007/s605-002-8256-2 | MR 1883500
[3] Huppert B.: Endliche Gruppen I. Springer, Berlin-Heidelberg, 1967. MR 0224703 | Zbl 0412.20002
[4] Leppälä E., Niemenmaa M.: On finite loops whose inner mapping groups are direct products of dihedral groups and abelian groups. Quasigroups Related Systems 20 (2012), no. 2, 257–260. MR 3232747 | Zbl 1273.20073
[5] Leppälä E., Niemenmaa M.: On finite commutative loops which are centrally nilpotent. Comment. Math. Univ. Carolin. 56 (2015), no. 2, 139–143. MR 3338728 | Zbl 1339.20064
[6] Mazur M.: Connected transversals to nilpotent groups. J. Group Theory 10 (2007), 195–203. DOI 10.1515/JGT.2007.015 | MR 2302614 | Zbl 1150.20010
[7] Niemenmaa M.: Finite loops with dihedral inner mapping groups are solvable. J. Algebra 273 (2004), 288–294. DOI 10.1016/j.jalgebra.2002.09.001 | MR 2032461 | Zbl 1047.20051
[8] Niemenmaa M., Kepka T.: On multiplication groups of loops. J. Algebra 135 (1990), 112–122. DOI 10.1016/0021-8693(90)90152-E | MR 1076080 | Zbl 0706.20046
[9] Vesanen A.: Solvable loops and groups. J. Algebra 180 (1996), 862–876. DOI 10.1006/jabr.1996.0098 | MR 1379214
Partner of
EuDML logo