Previous |  Up |  Next

Article

Keywords:
quasigroup; $3$-sorted quasigroup; homotopy; isotopy; quadratic identity; gemini identity; coherent identity; variety closed under isotopy (homotopy)
Summary:
According to S. Krstić, there are only four quadratic varieties which are closed under isotopy. We give a simple procedure generating quadratic identities and deciding which of the four varieties they define. There are about 37000 such identities with up to five variables.
References:
[1] Belousov V.D.: Balanced identities in quasigroups. Mat. Sbornik 70 (112) (1966), 55–97 (Russian). MR 0202898 | Zbl 0199.05203
[2] Belousov V.D.: Algebraic Nets and Quasigroups. Ştiinca, Kishinev, 1971 (Russian).
[3] Belyavskaya G.B.: Parastrophically equivalent identities characterizing quasigroups isotopic to abelian groups. Quasigroups Related Systems 22 (2014), no. 1, 19–32. MR 3266749 | Zbl 1303.20068
[4] Birkhoff G., Lipson J.D.: Heterogeneous algebras. J. Combinatorial Theory 8 (1970), 115–133. DOI 10.1016/S0021-9800(70)80014-X | MR 0250887 | Zbl 0211.02003
[5] Brožíková E.: On universal quasigroup identities. Math. Bohem. 117 (1992), no. 1, 20–32. MR 1154051 | Zbl 0771.20023
[6] Drápal A.: On multiplication groups of relatively free quasigroups isotopic to abelian groups. Czechoslovak Math. J. 55(130) (2005), 61–87. DOI 10.1007/s10587-005-0004-2 | MR 2121656 | Zbl 1081.20078
[7] Falconer E.: Isotopy invariants in quasigroups. Trans. Amer. Math. Soc. 151 (1970), no. 2, 511–526. DOI 10.1090/S0002-9947-1970-0272932-4 | MR 0272932 | Zbl 0209.04701
[8] Gvaramiya A.A.: Automata and quasigroups. Soobshch. Akad. Nauk Gruzin. SSR 114 (1984), no. 3, 481–484 (Russian). MR 0782270 | Zbl 0566.68052
[9] Gvaramiya A.A.: Quasivarieties of automata. Connections with quasigroups. Sibirsk. Mat. Zh. 26 (1985), no. 3, 11–30 (Russian); http://dx.doi.org/10.1007/BF00968618; English translation: Siberian Math. J. 26 (1985), 315–331, DOI: 10.1007/BF00968618. DOI 10.1007/BF00968618 | MR 0792051 | Zbl 0622.68050
[10] Gvaramiya A.A.: Quasigroup classes that are invariant under isotopy, and abstract classes of invertible automata. Dokl. Akad. Nauk SSSR 282 (1985), no. 5, 1047–1051 (Russian); English translation: Soviet. Math. Dokl. 31 (1985), 545–549. MR 0796940
[11] Gvaramiya A.A.: Category of quasigroups with homotopies. C.R. Acad. Bulgare Sci. 38 (1985), no. 6, 663–666. MR 0805437 | Zbl 0574.20057
[12] Gvaramiya A.A., Plotkin B.I.: The homotopies of quasigroups and universal algebras. in A. Romanowska, J.D.H. Smith (eds.), Universal Algebra and Quasigroup Theory (Jadwisin, 1989), Res. Expo. Math., 19, Heldermann, Berlin, 1992, pp. 89–99. MR 1191228 | Zbl 0818.20088
[13] Krapež A., Taylor M.A.: Gemini functional equations on quasigroups. Publ. Math. Debrecen 47 (1995), no. 3–4, 281-292. MR 1362290 | Zbl 0859.39014
[14] Krstić S.: Quadratic quasigroup identities. PhD thesis (Serbocroatian), University of Belgrade, 1985, http//elibrary.matf.bg.ac.rs/handle/123456789/182/phdSavaKrstic.pdf, (accessed May 5, 2015).
[15] Krstić S.: On quasigroup varieties closed under isotopies. Publ. Inst. Math. (Beograd) (N.S.) 39(53) (1986), 89–95. MR 0869181
[16] Manzano M.: Extensions of First Order Logic. Cambridge Tracts in Theoretical Computer Science, 19, Cambridge University Press, Cambridge, New York, 2005. MR 1386188 | Zbl 0848.03001
[17] Milić S.: On GD–groupoids with applications to $n$–ary quasigroups. Publ. Inst. Math. (Beograd) (N.S.) 13(27) (1972), 65–76. MR 0335669 | Zbl 0252.20056
[18] Petrescu A.: Certain questions of the theory of homotopy of universal algebras. in Contributions to universal algebra (Colloq. Math. Soc. Janos Boylai Vol. 17), North Holland, Amsterdam, 1977, pp. 341–355. MR 0472641 | Zbl 0367.08002
[19] Satyabhama V.: Generalized distributivity equation on GD-groupoids. Mat. Vesnik 29 (1977), no. 1, 137–146. MR 0463343
[20] Shahbazpour Kh.: An hyperidentity concerning the quasigroup identities isotopy closure to abelian group. Austral. J. Basic Appl. Sci. 3(4), (2009).
[21] Sioson F.M.: On generalized algebras. Portugal. Math. 25 (1966), 67–90. MR 0210646 | Zbl 0166.01004
[22] Sokhatskii F.N.: On isotopes of groups II. Ukrain. Mat. Zh. 47 (1995), no. 12, 1692–1703 (Ukrainian); English translation: Ukrainian Math. J. 47 (1995), no. 12, 1935–1948. MR 1389002
[23] Stojaković Z.: Generalized entropy on GD–groupoids with application to quasigroups of various arities. Mat. Vesnik 24 (1972), no. 1, 159–166.
[24] Voutsadakis G.: Categorical models and quasigroup homotopies. Theory Appl. Categ. 11 (2003), no. 1, 1–14. DOI 10.1023/A:1023055207145 | MR 1988069 | Zbl 1050.20047
Partner of
EuDML logo