Previous |  Up |  Next

Article

Keywords:
pseudo-Riemannian spin manifolds; Killing type equations; cone construction; spinor-valued differential forms
Summary:
On a pseudo-Riemannian manifold $\mathbb{M}$ we introduce a system of partial differential Killing type equations for spinor-valued differential forms, and study their basic properties. We discuss the relationship between solutions of Killing equations on $\mathbb{M}$ and parallel fields on the metric cone over $\mathbb{M}$ for spinor-valued forms.
References:
[1] Bär, C.: Real Killing spinors and holonomy. Communications in Mathematical Physics 154 (1993), 509–521. DOI 10.1007/BF02102106 | MR 1224089 | Zbl 0778.53037
[2] Baum, H., Friedrich, T., Grunewald, R., Kath, I.: Twistors and Killing spinors on Riemannian manifolds. Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], B. G. Teubner Verlagsgesellschaft, 1991. MR 1164864 | Zbl 0734.53003
[3] Berger, M.: Sur les groupes d’holonomie homogènes de variétés à connexion affine et des variétés riemanniennes. Bulletin de la Société Mathématique de France 83 (1955), 279–308. MR 0079806 | Zbl 0068.36002
[4] Bohle, C.: Killing spinors on Lorentzian manifolds. J. Geom. Phys. 45 (3–4) (2003), 285–308. DOI 10.1016/S0393-0440(01)00047-X | MR 1952661 | Zbl 1027.53050
[5] Duff, M.J., Nilsson, B.E.W., Pope, C.N.: Kaluza-Klein supergravity. Physics Reports. A Review Section of Physics Letters, vol. 130 (1–2), 1986, pp. 1–142. MR 0822171
[6] Duff, M.J., Pope, C.N.: Kaluza-Klein Supergravity and the Seven Sphere. Supersymmetry and Supergravity '82, Proceedings of the Trieste September 1982 School, World Scientific Press, 1983. MR 0728776
[7] Friedrich, T.: Der erste Eigenwert des Dirac-Operators einer kompakten, Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrümmung. Math. Nachr. 97 (1) (1980), 117–146. DOI 10.1002/mana.19800970111 | MR 0600828 | Zbl 0462.53027
[8] Friedrich, T.: On the conformal relation between twistors and Killing spinors. Proceedings of the Winter School “Geometry and Physics”, vol. 22 (2), Circolo Matematico di Palermo, 1990, pp. 59–75. MR 1061789 | Zbl 0703.53012
[9] Semmelmann, U.: Conformal Killing forms on Riemannian manifolds. Math. Z. 245 (2003), 503–527. DOI 10.1007/s00209-003-0549-4 | MR 2021568 | Zbl 1061.53033
[10] Simons, J.: On the transitivity of holonomy systems. Ann. of Math. (2) 76 (2) (1962), 213–234. DOI 10.2307/1970273 | MR 0148010 | Zbl 0106.15201
[11] Slupinski, M.J.: A Hodge type decomposition for spinor valued forms. Ann. Sci. École Norm. Sup. (4) 29 (1996), 23–48. DOI 10.24033/asens.1734 | MR 1368704 | Zbl 0855.58002
[12] Somberg, P.: Killing tensor spinor forms and their application in Riemannian geometry. Hypercomplex analysis and applications, Trends in Mathematics, Birkhauser, 2011, pp. 233–247. MR 3026144 | Zbl 1215.53020
[13] Stein, E.M., Weiss, G.: Generalization of the Cauchy-Riemann equations and representations of the rotation group. Amer. J. Math. 90 (1968), 163–196. DOI 10.2307/2373431 | MR 0223492 | Zbl 0157.18303
[14] Tachibana, S.-I., Yu, W.N.: On a Riemannian space admitting more than one Sasakian structures. Tohoku Math. J. (2) 22 (4) (1970), 536–540. DOI 10.2748/tmj/1178242720 | MR 0275329 | Zbl 0213.48301
[15] Walker, M., Penrose, R.: On quadratic first integrals of the geodesic equations for type $\lbrace 22\rbrace $ spacetimes. Comm. Math. Phys. 18 (1970), 265–274. DOI 10.1007/BF01649445 | MR 0272351
[16] Yano, K.: Some remarks on tensor fields and curvature. Ann. of Math. (2) 55 (1952), 328–347. DOI 10.2307/1969782 | MR 0048892 | Zbl 0046.40002
[17] Zima, P.: (Conformal) Killing spinor valued forms on Riemannian manifolds. Thesis, Charles University in Prague (2014), Available online at: https://is.cuni.cz/webapps/zzp/detail/121806
Partner of
EuDML logo