Previous |  Up |  Next

Article

Keywords:
almost-cosymplectic-contact structure; almost-coPoisson-Jacobi structure; infinitesimal symmetry; Lie algebra
Summary:
We study Lie algebras of generators of infinitesimal symmetries of almost-cosymplectic-contact structures of odd dimensional manifolds. The almost-cosymplectic-contact structure admits on the sheaf of pairs of 1-forms and functions the structure of a Lie algebra. We describe Lie subalgebras in this Lie algebra given by pairs generating infinitesimal symmetries of basic tensor fields given by the almost-cosymplectic-contact structure.
References:
[1] de Leon, M., Tuynman, G.M: A universal model for cosymplectic manifolds. J. Geom. Phys. 20 (1996), 77–86. DOI 10.1016/0393-0440(96)00047-2 | MR 1407405 | Zbl 0861.53026
[2] Janyška, J.: Remarks on local Lie algebras of pairs of functions. preprint 2016, arXiv: 1610.08706v1.
[3] Janyška, J.: Relations between constants of motion and conserved functions. Arch. Math.(Brno) 51 (2015), 297–313. DOI:  http://dx.doi.org/10.5817/AM2015-5-297 DOI 10.5817/AM2015-5-297 | MR 3449110 | Zbl 1374.70055
[4] Janyška, J., Modugno, M.: Geometric Structures of the Classical General Relativistic Phase Space. Int. J. Geom. Methods Mod. Phys. 5 (2008), 699–754. DOI 10.1142/S021988780800303X | MR 2445392 | Zbl 1160.53008
[5] Janyška, J., Modugno, M.: Generalized geometrical structures of odd dimensional manifolds. J. Math. Pures Appl. (9) 91 (2009), 211–232. DOI 10.1016/j.matpur.2008.09.007 | MR 2498755 | Zbl 1163.53051
[6] Janyška, J., Vitolo, R.: On the characterization of infinitesimal symmetries of the relativistic phase space. J. Phys. A: Math. Theor. 45 (2012), 485205. DOI 10.1088/1751-8113/45/48/485205 | MR 2998421 | Zbl 1339.70036
[7] Kirillov, A.A.: Local Lie algebras. Russian Math. Surveys 31 (1976), 55–76. DOI 10.1070/RM1976v031n04ABEH001556 | MR 0438390 | Zbl 0357.58003
[8] Kolář, I., Michor, P.W., Slovák, J.: Natural Operations in Differential Geometry. Springer, 1993. MR 1202431
[9] Lichnerowicz, A.: Les variétés de Jacobi et leurs algèbres de Lie associées. J. Math. Pures Appl. (9) 57 (1978), 453–488. MR 0524629 | Zbl 0407.53025
[10] Mackenzie, K.: General Theory of Lie Groupoids and Lie Algebroids. London Mathematical Society, Lecture Note Series, vol. 213, Cambridge University Press, 2005. MR 2157566 | Zbl 1078.58011
[11] Vaisman, I.: Lectures on the Geometry of Poisson Manifolds. Birkhäuser Verlag, Basel–Boston–Berlin, 1994. MR 1269545 | Zbl 0810.53019
Partner of
EuDML logo