[1] Agarwal, R.P, Benchohra, M., Hamani, S.:
A survey on existence results for boundary value problems for nonlinear fractional differential equations and inclusions. Acta Appl. Math. 109 (3) (2010), 973–1033.
DOI 10.1007/s10440-008-9356-6 |
MR 2596185
[2] Ahmed, B., Ntouyas, S.K.:
Initial value problems for hybrid Hadamard fractional equations. EJDE 2014 (161) (2014), 1–8.
MR 3239404
[3] Aubin, J.P., Cellina, A.:
Differential Inclusions. Springer-Verlag, Berlin-Heidelberg, New York, 1984.
MR 0755330 |
Zbl 0538.34007
[5] Benchohra, M., Djebali, S., Hamani, S.:
Boundary value problems of differential inclusions with Riemann-Liouville fractional derivative. Nonlinear Oscillation 14 (1) (2011), 7–20.
DOI 10.1007/s11072-011-0137-1 |
MR 2976264
[7] Benchohra, M., Hamani, S.:
Nonlinear boundary value problems for differential inclusions with Caputo fractional derivative. Topol. Meth. Nonlinear Anal. 32 (1) (2008), 115–130.
MR 2466806 |
Zbl 1180.26002
[10] Butzer, P.L., Kilbas, A.A., Trujillo, J.J.:
Composition of Hadamard-type fractional integration operators and the semigroup property. J. Math. Anal. Appl. 269 (2002), 387–400.
DOI 10.1016/S0022-247X(02)00049-5 |
MR 1907120
[14] Covitz, H., Nadler, Jr., S.B.:
Multivalued contraction mappings in generalized metric spaces. Israel J. Math. 8 (1970), 5–11.
DOI 10.1007/BF02771543 |
MR 0263062
[15] Deimling, K.:
Multivalued Differential Equations. Walter De Gruyter, Berlin-New York, 1992.
MR 1189795 |
Zbl 0820.34009
[19] Fryszkowski, A.:
Fixed Point Theory for Decomposable Sets. Topological Fixed Point Theory and Its Applications. vol. 2, Kluwer Academic Publishers, Dordrecht, 2004.
MR 2084131
[20] Hadamard, J.: Essai sur l’etude des fonctions donnees par leur development de Taylor. J. Math. Pure Appl. 8 (1892), 101–186.
[21] Hamani, S., Benchohra, M., Graef, J.R.:
Existence results for boundary-value problems with nonlinear fractional differential inclusions and integral conditions. EJDE 2010 No. 20 (2010), 1–16.
MR 2592005 |
Zbl 1185.26010
[22] Heymans, N., Podlubny, I.:
Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives. Rheologica Acta 45 (5) (2006), 765–772.
DOI 10.1007/s00397-005-0043-5 |
MR 1658022
[23] Hilfer, R.:
Applications of Fractional Calculus in Physics. World Scientific, Singapore, 2000.
MR 1890104 |
Zbl 0998.26002
[24] Kaufmann, E.R., Mboumi, E.:
Positive solutions of a boundary value problem for a nonlinear fractional differential equation. EJQTDE 2007 (3) (2007), 11pp.
MR 2369417
[26] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.:
Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, 2006.
MR 2218073 |
Zbl 1092.45003
[27] Miller, K.S., Ross, B.:
An Introduction to the Fractional Calculus and Differential Equations. John Wiley, New York, 1993.
MR 1219954
[30] Podlubny, I.:
Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calculus Appl. Anal. 5 (2002), 367–386.
MR 1967839 |
Zbl 1042.26003
[31] Thiramanus, P., Ntouyas, S.K., Tariboon, J.:
Existence and uniqueness results for Hadamard-type fractional differential equations with nonlocal fractional integral boundary conditions. Abstr. Appl. Anal. (2014), Art ID 902054, 9 pp.
MR 3228094
[32] Zhang, S.:
Positive solutions for boundary-value problems of nonlinear fractional differential equations. EJDE (2006), no. 36, 1–12.
MR 2213580 |
Zbl 1096.34016