Previous |  Up |  Next

Article

Keywords:
fractional differential inclusion; Hadamard-type fractional derivative; fractional integral; fixed point; convex
Summary:
We establish sufficient conditions for the existence of solutions of a class of fractional functional differential inclusions involving the Hadamard fractional derivative with order $\alpha \in (0,1]$. Both cases of convex and nonconvex valued right hand side are considered.
References:
[1] Agarwal, R.P, Benchohra, M., Hamani, S.: A survey on existence results for boundary value problems for nonlinear fractional differential equations and inclusions. Acta Appl. Math. 109 (3) (2010), 973–1033. DOI 10.1007/s10440-008-9356-6 | MR 2596185
[2] Ahmed, B., Ntouyas, S.K.: Initial value problems for hybrid Hadamard fractional equations. EJDE 2014 (161) (2014), 1–8. MR 3239404
[3] Aubin, J.P., Cellina, A.: Differential Inclusions. Springer-Verlag, Berlin-Heidelberg, New York, 1984. MR 0755330 | Zbl 0538.34007
[4] Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Birkhäuser, Boston, 1990. MR 1048347 | Zbl 0713.49021
[5] Benchohra, M., Djebali, S., Hamani, S.: Boundary value problems of differential inclusions with Riemann-Liouville fractional derivative. Nonlinear Oscillation 14 (1) (2011), 7–20. DOI 10.1007/s11072-011-0137-1 | MR 2976264
[6] Benchohra, M., Hamani, S.: Boundary value problems for differential inclusions with fractional order. Diss. Math. Diff. Inclusions. Control and Optimization 28 (2008), 147–164. DOI 10.7151/dmdico.1099 | MR 2548782 | Zbl 1181.26012
[7] Benchohra, M., Hamani, S.: Nonlinear boundary value problems for differential inclusions with Caputo fractional derivative. Topol. Meth. Nonlinear Anal. 32 (1) (2008), 115–130. MR 2466806 | Zbl 1180.26002
[8] Bressan, A., Colombo, G.: Extensions and selections of maps with decomposable values. Studia Math. 90 (1988), 69–86. DOI 10.4064/sm-90-1-69-86 | MR 0947921 | Zbl 0677.54013
[9] Burton, T.A., Kirk, C.: A fixed point theorem of Krasnoselskii-Schaefer type. Math. Nachr. 189 (1998), 23–31. DOI 10.1002/mana.19981890103 | MR 1492921 | Zbl 0896.47042
[10] Butzer, P.L., Kilbas, A.A., Trujillo, J.J.: Composition of Hadamard-type fractional integration operators and the semigroup property. J. Math. Anal. Appl. 269 (2002), 387–400. DOI 10.1016/S0022-247X(02)00049-5 | MR 1907120
[11] Butzer, P.L., Kilbas, A.A., Trujillo, J.J.: Fractional calculus in the Mellin setting and Hadamard-type fractional integrals. J. Math. Anal. Appl. 269 (2002), 1–27. DOI 10.1016/S0022-247X(02)00001-X | MR 1907871 | Zbl 0995.26007
[12] Butzer, P.L., Kilbas, A.A., Trujillo, J.J.: Mellin transform analysis and integration by parts for Hadamard-type fractional integrals. J. Math. Anal. Appl. 270 (2002), 1–15. DOI 10.1016/S0022-247X(02)00066-5 | MR 1911748 | Zbl 1022.26011
[13] Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions. Lecture Notes in Math., vol. 580, Springer-Verlag, Berlin-Heidelberg-New York, 1977. DOI 10.1007/BFb0087688 | MR 0467310 | Zbl 0346.46038
[14] Covitz, H., Nadler, Jr., S.B.: Multivalued contraction mappings in generalized metric spaces. Israel J. Math. 8 (1970), 5–11. DOI 10.1007/BF02771543 | MR 0263062
[15] Deimling, K.: Multivalued Differential Equations. Walter De Gruyter, Berlin-New York, 1992. MR 1189795 | Zbl 0820.34009
[16] Delbosco, D., Rodino, L.: Existence and uniqueness for a nonlinear fractional differential equation. J. Math. Anal. Appl. 204 (1996), 609–625. DOI 10.1006/jmaa.1996.0456 | MR 1421467 | Zbl 0881.34005
[17] Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265 (2002), 229–248. DOI 10.1006/jmaa.2000.7194 | MR 1876137 | Zbl 1014.34003
[18] Fryszkowski, A.: Continuous selections for a class of nonconvex multivalued maps. Studia Math. 76 (1983), 163–174. DOI 10.4064/sm-76-2-163-174 | MR 0730018
[19] Fryszkowski, A.: Fixed Point Theory for Decomposable Sets. Topological Fixed Point Theory and Its Applications. vol. 2, Kluwer Academic Publishers, Dordrecht, 2004. MR 2084131
[20] Hadamard, J.: Essai sur l’etude des fonctions donnees par leur development de Taylor. J. Math. Pure Appl. 8 (1892), 101–186.
[21] Hamani, S., Benchohra, M., Graef, J.R.: Existence results for boundary-value problems with nonlinear fractional differential inclusions and integral conditions. EJDE 2010 No. 20 (2010), 1–16. MR 2592005 | Zbl 1185.26010
[22] Heymans, N., Podlubny, I.: Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives. Rheologica Acta 45 (5) (2006), 765–772. DOI 10.1007/s00397-005-0043-5 | MR 1658022
[23] Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore, 2000. MR 1890104 | Zbl 0998.26002
[24] Kaufmann, E.R., Mboumi, E.: Positive solutions of a boundary value problem for a nonlinear fractional differential equation. EJQTDE 2007 (3) (2007), 11pp. MR 2369417
[25] Kilbas, A.A., Marzan, S.A.: Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions. Differential Equ. 41 (2005), 84–89. DOI 10.1007/s10625-005-0137-y | MR 2213269 | Zbl 1160.34301
[26] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, 2006. MR 2218073 | Zbl 1092.45003
[27] Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Differential Equations. John Wiley, New York, 1993. MR 1219954
[28] Momani, S.M., Hadid, S.B., Alawenh, Z.M.: Some analytical properties of solutions of differential equations of noninteger order. Int. J. Math. Math. Sci. 2004 (2004), 697–701. DOI 10.1155/S0161171204302231 | MR 2054178 | Zbl 1069.34002
[29] Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego, 1999. MR 1658022 | Zbl 0924.34008
[30] Podlubny, I.: Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calculus Appl. Anal. 5 (2002), 367–386. MR 1967839 | Zbl 1042.26003
[31] Thiramanus, P., Ntouyas, S.K., Tariboon, J.: Existence and uniqueness results for Hadamard-type fractional differential equations with nonlocal fractional integral boundary conditions. Abstr. Appl. Anal. (2014), Art ID 902054, 9 pp. MR 3228094
[32] Zhang, S.: Positive solutions for boundary-value problems of nonlinear fractional differential equations. EJDE (2006), no. 36, 1–12. MR 2213580 | Zbl 1096.34016
Partner of
EuDML logo