[4] Baues, O., Cortés, V.: Symplectic Lie Groups I–III. arXiv:1307.1629.
[9] Drinfeld, V.G.:
Hamiltonian structures on Lie groups, Lie bialgebras, and the geometric meaning of the classical Yang-Baxter equations. Dokl. Akad. Nauk SSSR 268 (2) (1983), 285–287, (Russian).
MR 0688240 |
Zbl 0526.58017
[10] Etingof, P., Schiffman, O.:
Lectures on Quantum Groups. Lect. Math. Phys., Int. Press, 1998.
MR 1698405
[12] Goyvaerts, I., Vercruysse, J.:
A Note on the Categorification of Lie Algebras. Lie Theory and Its Applications in Physics, Springer Proceedings in Math. $\&$ Stat., 2013, pp. 541–550.
MR 3070680 |
Zbl 1280.17027
[14] Helgason, S.:
Differential Geometry, Lie groups, and Symmetric Spaces. Pure Appl. Math., 1978.
MR 1834454 |
Zbl 0451.53038
[17] Kosmann-Schwarzbach, Y.: Poisson-Drinfel’d groups. Publ. Inst. Rech. Math. Av. 5 (12) (1987).
[18] Kosmann-Schwarzbach, Y.:
Lie Bialgebras, Poisson Lie groups and dressing transformations. Integrability of nonlinear systems (Pondicherry, 1996), vol. 495, Lecture Notes in Phys., 1997, pp. 104–170.
MR 1636293 |
Zbl 1078.37517
[19] Lee, J.:
Introduction to Smooth Manifolds. Springer-Verlag, New York Inc., 2003.
MR 1930091
[24] Semenov-Tian-Shansky, M.A.:
What is a classical $r$-matrix?. Funct. Anal. Appl. 17 (1983), 259–272.
DOI 10.1007/BF01076717
[25] Turaev, V.: Homotopy field theory in dimension 2 and group-algebras. arXiv.org:math/9910010, (1999).