Previous |  Up |  Next

Article

Keywords:
gradient estimates; general heat equation; Laplacian comparison theorem; $V$-Bochner-Weitzenböck; Bakry-Emery Ricci curvature
Summary:
In this paper, we consider gradient estimates on complete noncompact Riemannian manifolds $(M,g)$ for the following general heat equation \[ u_t=\Delta _V u+au\log u+bu \] where $a$ is a constant and $b$ is a differentiable function defined on $M\times [0, \infty )$. We suppose that the Bakry-Émery curvature and the $N$-dimensional Bakry-Émery curvature are bounded from below, respectively. Then we obtain the gradient estimate of Li-Yau type for the above general heat equation. Our results generalize the work of Huang-Ma ([4]) and Y. Li ([6]), recently.
References:
[1] Chen, Q., Jost, J., Qiu, H.B.: Existence and Liouville theorems for $V$-harmonic maps from complete manifolds. Ann. Global Anal. Geom. 42 (2012), 565–584. DOI 10.1007/s10455-012-9327-z | MR 2995205 | Zbl 1270.58010
[2] Davies, E.B.: Heat kernels and spectral theory. Cambridge University Press, 1989. MR 0990239 | Zbl 0699.35006
[3] Dung, N.T., Khanh, N.N.: Gradient estimates of Hamilton - Souplet - Zhang type for a general heat equation on Riemannian manifolds. Arch. Math (Basel) 105 (2015), 479–490. DOI 10.1007/s00013-015-0828-4 | MR 3413923 | Zbl 1329.58023
[4] Huang, G.Y., Ma, B.Q.: Gradient estimates for a nonlinear parabolic equation on Riemannian manifolds. Arch. Math. (Basel) 94 (2010), 265–275. DOI 10.1007/s00013-009-0091-7 | MR 2602453 | Zbl 1194.58020
[5] Li, P., Yau, S.T.: On the parabolic kernel of the Schrödinger operator. Acta Math. 156 (1986), 152–201. MR 0834612 | Zbl 0611.58045
[6] Li, Y.: Li-Yau-Hamilton estimates and Bakry-Emery Ricci curvature. Nonlinear Anal. 113 (2015), 1–32. MR 3281843 | Zbl 1310.58015
[7] Negrin, E.R.: Gradient estimates and a Liouville type theorem for the Schrödinger operator. J. Funct. Anal. 127 (1995), 198–203. DOI 10.1006/jfan.1995.1008 | MR 1308622 | Zbl 0842.58078
Partner of
EuDML logo