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GRADIENT ESTIMATES OF LI YAU TYPE FOR A GENERAL
HEAT EQUATION ON RIEMANNIAN MANIFOLDS

Nguyen Ngoc Khanh

Abstract. In this paper, we consider gradient estimates on complete non-
compact Riemannian manifolds (M, g) for the following general heat equation

ut = ∆V u+ au log u+ bu
where a is a constant and b is a differentiable function defined onM×[0,∞). We
suppose that the Bakry-Émery curvature and the N -dimensional Bakry-Émery
curvature are bounded from below, respectively. Then we obtain the gradient
estimate of Li-Yau type for the above general heat equation. Our results
generalize the work of Huang-Ma ([4]) and Y. Li ([6]), recently.

1.. Introduction

Recently, the weighted Laplacian on smooth metric measure spaces has been
attracted by many researchers. Recall that a triple (M, g, e−fdv) is called a smooth
metric measure space if (M, g) is a Riemannian manifold, f is a smooth function
on M and dv is the volume form with respect to g. On smooth metric measure
spaces, the weighted Laplace operator is defined by

∆f · := ∆ · − 〈∇f,∇·〉

where ∆ is the Laplace operator on M . On (M, g, e−fdv), the Bakry-Émery cur-
vature Ricf and the N -dimensional Bakry-Émery curvarute RicNf are defined
by

Ricf := Ric + Hess f, RicNf := Ricf −
1
N
∇f ⊗∇f

where Ric, Hess f are the Ricci curvature and the Hessian of f on M , respectively.
An important generalization of the weighted Laplace operator on Riemannian

manifolds is the following operator
∆V · := ∆ ·+ 〈V,∇·〉

where∇ and ∆ are respectively the Levi-Civita connection and the Laplace-Beltrami
operator with respect to g, V is a smooth vector field on M . In [1] and [6], the
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authors introduced two curvatures

RicV := Ric− 1
2LV g,RicNV := RicV −

1
N
V ⊗ V

where N ∈ N is a positive constant and LV is the Lie derivative associated to
the vector field V . When V = −∇f then two curvatures RicV , RicNV become the
Bakry-Émery curvature and the N -dimensional Bakry-Émery curvature, respecti-
vely.

In this paper, let (M, g) be a Riemannian manifold and V be a smooth vector
field on M . We consider the following general heat equation

(1.1) ut = ∆V u+ au log u+ bu

where a is a constant and b is a function defined on M×[0,∞) which is differentiable
on M× [0,+∞). When M is a compact manifold and b = 0, Li ([6]) studied gradient
estimates of Li-Yau type for equation (1.1). His results can be considered as a
generalization of the famous work of Li and Yau ([5]). Moreover, Li also studied
gradient estimates of Hamilton type for the equation (1.1) when a = b = 0 on
complete noncompact manifolds. In the general case, when a, b are constants and
M is a complete noncompact manifold, Huang and Ma introduced a gradient
estimate of Li-Yau type which is independent of K. Here K > 0 such that −K is
the lower bound of the N -dimensional Bakry-Émery curvature. Then, they derived
the Gaussian lower bound of the heat kernel for the equation ut = ∆V u. Recently,
Dung and the author investigated gradient estimates of Hamilton-Souplet-Zhang
type. Our work is a generalization of the results of Huang-Ma, Y. Li and other
mathematicians, see [3, 5, 6] for further discussion and the references there in.

Motivated by the above result, it is very natural for us to look for gradient
estimates of Li-Yau type for the general heat equation (1.1). In this paper, under
some natural conditions on the curvatures, we are able to extend the work of
Huang-Ma and Li to complete noncompact manifolds. Our main theorem is as
follows.

Theorem 1.1. Let (M, g) be a complete noncompact n-dimensional Riemannian
manifold with RicV bounded from below by the constant −K := −K(2R), where
R > 0, K(2R) > 0 in the geodesic ball B(p, 2R) centered at some fixed point p ∈M
and V be a smooth vector field on M such that |V | ≤ L for some positive constant
L ∈ R. Suppose that a is a real constant, b is a differentiable function defined on
M × [0,+∞) and the general heat equation

∂u

∂t
= ∆V u+ au log u+ bu

has a positive solution u on M × [0,∞). Then, for all x ∈ B(p,R), t ∈ (0,∞), we
have
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(1) If a ≤ 0, then

β
|∇u|2

u2 + a log u− ut
u
≤ n

2(1− δ)β

{ nc2
1

16δβ(1− β)R2 +A+ 1
t

+ 6βθ
n

+ βL2

(1− β)N −
a

2 + θβ

2(1− β) +
√
θβ(1 + β − a)

n

}
;

(2) If a ≥ 0, then

β
|∇u|2

u2 + a log u− ut
u
≤ n

2(1− δ)β

{ nc2
1

16δβ(1− β)R2 +A+ 1
t

+ 6βθ
n

+ βL2

(1− β)N + a+ θβ

2(1− β) +
√
θβ(1 + β + a)

n

}
,

where c1 and c2 are positive constants, β = e−2Kt, 0 < δ < 1, θ := max{|b|, |bt|, |∇b|}
∈ R and A is defined by

A =
(n− 1 +

√
(n− 1)KR+ LR)c1 + c2 + 2c2

1
R2 .

The paper is organized as follows. In the section 2, we give a proof of Theorem
1.1. In section 3, we point out that we can recover the main theorem in [4] by using
Theorem 1.1. Moreover, we also show some applications to give gradient estimate s
of solution of some general heat equations and prove a Harnack inequality for such
a solution. This is an extension of the work of Huang-Ma and Li.

2.. Gradient estimate of Li Yau type

To begin with, let us recall the following Laplacian comparison theorem in [1].

Theorem 2.1 ([1]). Let (M, g) be a complete noncompact Riemannian manifold
with RicV bounded from below by the constant −K := −K(2R), where R > 0,
K(2R) > 0 in the geodesic ball B(p, 2R) with radius 2R around p ∈M . Suppose that
V is a smooth vector field on M satisfying 〈V,∇ρ〉 ≤ v(ρ) for some nondecreasing
function v(·), where ρ(x) is the distance from a fixed point p to the considered point
x. Then

∆V ρ ≤
√

(n− 1)K + n− 1
ρ

+ v(ρ) .

Noting that if v(·) is bounded by a positive constant L then we have

(2.2) ∆V ρ ≤
√

(n− 1)K + n− 1
ρ

+ L .

To prove the Theorem 1.1, we first derive the following important lemma.

Lemma 2.2. Let (M, g) be a complete noncompact Riemannian manifold with
RicV bounded from below by the constant −K := −K(2R), where R > 0, K(2R) > 0
in the geodesic ball B(p, 2R) with radius 2R around p ∈ M and V is a smooth
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vector field on M such that |V | is bounded by a positive constant L. For the smooth
function w = log u, where u be a positive solution to (1.1) then

∆V F−Ft ≥ t
{2β
n

(∆V w)2 +
(−2βL2

N
− a(β − 1)

)
|∇w|2−2β 〈∇w,∇b〉+ bt−ab

}
− 2 〈∇w,∇F 〉 − aF − F

t
,

where F = t(β|∇w|2 + aw − wt).

Proof. Let w = log u with u be the positive solution to (1.1) then

wt = |∇w|2 + ∆V w + aw + b .

Hence,

(2.3) ∆V wt = −2 〈∇w,∇wt〉 − awt + wtt − bt .

and

∆V w = (β − 1)|∇w|2 − F

t
− b(2.4)

=
(

1− 1
β

)
(−aw + wt)−

F

tβ
− b .(2.5)

Since RicV ≥ −K, |V | ≤ L and V-Bochner-Weitzenböck formula (see [6]) implies

(2.6) ∆V |∇w|2 ≥
2
n

(∆V w)2 − 2
(
K + L2

N

)
|∇w|2 + 2 〈∇w,∇∆V w〉 .

By the definition F , it is easy to show that

Ft = F

t
+ t
(
− 2Kβ|∇w|2 + 2β 〈∇w,∇wt〉+ awt − wtt

)
∆V F = t

(
β∆V (|∇w|2) + a∆V w −∆V wt

)
.

Therefore,

∆V F − Ft = t
(
β∆V (|∇w|2) + a∆V w −∆V wt

)
− F

t

− t
(
− 2Kβ|∇w|2 + 2β 〈∇w,∇wt〉+ awt − wtt

)
.(2.7)

Combining (2.3), (2.5), (2.6) and (2.7), we obtain

∆V F − Ft ≥ t
{2β
n

(∆V w)2 +
(−2βL2

N
− 2βa

(
1− 1

β

))
|∇w|2 − 2β 〈∇w,∇b〉+

− a2
(

1− 1
β

)
w + a

(
1− 1

β

)
wt − ab+ bt

}
− 2 〈∇w,∇F 〉+

(−a
β
− 1
t

)
F .(2.8)

On the other hand, by direct computation, we have

(2.9) − a2
(

1− 1
β

)
w + a

(
1− 1

β

)
wt = −aF

t
+ aF

tβ
+ a(β − 1)|∇w|2 .
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Substituting (2.9) into (2.8), we get

∆V F−Ft ≥ t
{2β
n

(∆V w)2 +
(−2βL2

N
− a(β−1)

)
|∇w|2−2β 〈∇w,∇b〉+ bt−ab

}
− 2 〈∇w,∇F 〉 − aF − F

t
.

The proof is complete. �

Now, we prove the Theorem 1.1.
Proof of Theorem 1.1. Let ξ(r) be a cut-off function such that ξ(r) = 1 for
r ≤ 1, ξ(r) = 0 for r ≥ 2, 0 ≤ ξ(r) ≤ 1, and

0 ≥ ξ
−1
2 (r)ξ

′
(r) ≥ −c1 ,

ξ
′′
(r) ≥ −c2

for positive constants c1 and c2.
Put ϕ(x) = ξ

(ρ(x)
R

)
, it is easy to see that

(2.10) |∇ϕ|2

ϕ
= |∇ξ|

2

ξ
= 1
ξ(r)

(
ξ(r)′

)2

R2 |∇ρ(x)|2 ≤ (−c1)2

R2 = c2
1
R2 .

Hence, by the inequality (2.2), we have

∆V ϕ = ξ(r)′′ |∇ρ|2

R2 + ξ(r)′∆V ρ

R

≥ −c2

R2 + (−c1)
R

[√
(n− 1)K + n− 1

ρ
+ L

]
= −

R
[√

(n− 1)K + n−1
ρ + L

]
c1 + c2

R2

≥ −
(
n− 1 +

√
(n− 1)KR+ LR

)
c1 + c2

R2 .(2.11)

For T ≥ 0, let (x, t) be a point in B2R(p)× [0, T ] at which ϕF attains its maximum.
At the point (x, t), we have 

∇(ϕF ) = 0

∆V (ϕF ) ≤ 0

Ft ≥ 0

.

Since ∇(ϕF ) = ϕ∇F + F∇ϕ = 0, this implies ∇F = −Fϕ−1∇ϕ. It follows that

∆V (ϕF ) = ϕ∆V F + F∆V ϕ− 2Fϕ−1|∇ϕ|2 ≤ 0.
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Substituting (2.10) and (2.11) into the above inequality, we obtain

ϕ∆V F ≤ F
(

2|∇ϕ|2

ϕ
−∆V ϕ

)
≤ F

((
n− 1 +

√
(n− 1)KR+ LR

)
c1 + c2 + 2c2

1
R2

)
= FA(2.12)

where A =
(
n− 1 +

√
(n− 1)KR+ LR

)
c1 + c2 + 2c2

1
R2 .

Combining Lemma 2.2 and (2.12), we infer

FA ≥ ϕ∆V F ≥ ϕ∆V F − Ft

≥ tϕ
{

2β
n

(∆V w)2+
(−2βL2

N
−a(β−1)

)
|∇w|2−2β 〈∇w,∇b〉+bt−ab

}
+ ϕ

{
− 2 〈∇w,∇F 〉 − aF − F

t

}
.(2.13)

Here we used Ft ≤ 0. Since 0 = ∇(ϕF ) = ϕ∇F + F∇ϕ, we have

(2.14) − 2ϕ 〈∇w,∇F 〉 = 2F 〈∇w,∇ϕ〉 ≥ −2F |∇w| |∇ϕ| ≥ −2c1

R
ϕ

1
2F |∇w| .

By (2.4), we yield

(2.15) (∆V w)2 ≥
[
(β − 1)|∇w|2 − F

t

]2
+ 2
[
(β − 1)|∇w|2 − F

t

]
(−b) .

Plugging (2.14) and (2.15) into (2.13), we obtain

FA ≥ ϕt
{2β
n

((
(β − 1)|∇w|2 − F

t

)2
+ 2
(

(β − 1)|∇w|2 − F

t

)
(−b)

)
+
(−2βL2

N
− a(β − 1)

)
|∇w|2 − 2β 〈∇w,∇b〉+ bt − ab

}
+ ϕ

{
− aF − F

t

}
− 2c1

R
ϕ

1
2F |∇w| .(2.16)

By the similar argument as Davies [2] or as Negrin [7], we put µ = |∇w|2
F . Then

(2.16) can be read as

2ϕtβ
n

[(β − 1)µtF − F ]2

t2
≤ AF + 4ϕtβ

n

[(β − 1)µtF − F ]b
t

+ ϕFtµ
(2βL2

N
+ a(β − 1)

)
+ 2βϕt 〈∇w,∇b〉

+ ϕt(ab− bt) + 2c1

R
µ

1
2ϕ

1
2F

3
2 + aϕF + ϕF

t
.
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Multiplying both sides of the above inequality by ϕt we arrive at

2β[(β − 1)tµ− 1]2

n
(ϕF )2 ≤ 2c1

R
tµ

1
2ϕ

3
2F

3
2 + (At+ 1)ϕF

+
{4β[(β − 1)tµ− 1]b

n
+ tµ

(2βL2

N
+ a(β − 1)

)
+ a
}
tϕ2F

+ 2βϕ2t2 〈∇w,∇b〉+ ϕ2t2(ab− bt) .(2.17)

Now we want to estimate the right hand side of (2.17). The first term of the
right-hand side of (2.17) can be estimated as follows.

(2.18) 2c1

R
tµ

1
2 (ϕF ) 3

2 ≤ 2δβ[(β − 1)tµ− 1]2

n
(ϕF )2 + nc2

1t
2µ

2δβ[(β − 1)tµ− 1]2R2 (ϕF )

with 0 < δ < 1, and the third term of the right-hand side of (2.17) is evaluated as
below.

(2.19) 2ϕ2t2β 〈∇w,∇b〉 ≤ 2ϕ2t2β|∇b|(µF ) 1
2 ≤ t2β|∇b|(µϕF + 1) .

By the definition of θ, it is easy to see that

B := t2β|∇b| ≤ θt2β and C := t2β|∇b|+ϕ2t2(ab− bt) ≤ θt2β+ϕ2t2(|a|+1)θ .

Plugging these above estimates and (2.18), (2.19) into (2.17), we obtain

2β[(β−1)tµ−1]2(ϕF )2

n
≤ 2δβ[(β−1)tµ−1]2

n
(ϕF )2+ nc2

1t
2µ

2δβ[(β−1)tµ−1]2R2 (ϕF )

+
{4β[(β−1)tµ−1]b

n
+tµ

(2βL2

N
+a(β−1)

)
+a
}
tϕ2F

+ (At+ 1)ϕF + µBϕF + C .(2.20)

Now, we have two cases.
1. If a ≤ 0 then atϕ2F ≤ 0, |a| = −a, and

4tβ[(β − 1)tµ− 1]b
n

≤ −4tβ[(β − 1)tµ− 1]θ
n

.

By (2.20), we have

(ϕF )2 ≤ n

2(1− δ)β[(β − 1)tµ− 1]2
{ nc2

1t
2µ

2δβ[(β − 1)tµ− 1]2R2 +At+ 1

+
(
a+ θβ

β − 1 −
4βθ
n

)
t2µ(β − 1) + 4tβθ

n
+ 2t2µβL

2

N

}
ϕF

+ n

2(1− δ)β[(β − 1)tµ− 1]2
(
θt2β + ϕ2t2(1− a)θ

)
.
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Using the fact that if a, b ≥ 0 satisfying x2 ≤ ax+ b then x ≤ a+
√
b, the above

inequality implies

ϕF ≤ n

2(1− δ)β[(β − 1)tµ− 1]2
{ nc2

1t
2µ

2δβ[(β − 1)tµ− 1]2R2 +At+ 1

+
(
a+ θβ

β − 1 −
4βθ
n

)
t2µ(β − 1) + 4tβθ

n
+ 2t2µβL

2

N

}
+

√
n(θt2β + ϕ2t2(1− a)θ)

2(1− δ)β[(β − 1)tµ− 1]2 .(2.21)

Since
(
(β − 1)µt− 1

)2 ≥ 2(1− β)µt+ 1 ≥ 1, we have

1
2(1− δ)β

(
(β − 1)µt− 1

)2 ≤
1

2(1− δ)β .

Therefore,

1
2(1− δ)β

(
(β − 1)µt− 1

)2
nc2

1t
2µ

2δβ[(β − 1)µt− 1]2R2

≤ n

2(1− δ)β
c2

1t

16δβ(1− β)R2 ,(2.22)

and
1

2(1− δ)β
(
(β − 1)µt− 1

)2

(
At+ 1 + 4tβθ

n

)
≤ 1

2(1− δ)β

(
At+ 1 + 4tβθ

n

)
,(2.23)

where in (2.22), we used (
(1− β)tµ+ 1

)2 ≥ 2(1− β)tµ .

Since
(
(β − 1)tµ− 1

)2 ≥ 2(1− β)tµ, we have

1
2(1− δ)β[(β − 1)µt− 1]2

((
a+ θβ

β − 1 −
4βθ
n

)
t2µ(β − 1) + 2t2µβL

2

N

)
≤ 1

2(1− δ)β
−1
2

((
a+ θβ

β − 1 −
4βθ
n

)
t+ tβL2

(1− β)N

)
.(2.24)

Moreover, since ϕ2 ≤ 1 and 0 < δ < 1, we infer√
n
(
θt2β + ϕ2t2(1− a)θ

)
2(1− δ)β[(β − 1)tµ− 1]2 ≤

√
n
(
θt2β + ϕ2t2(1− a)θ

)
2(1− δ)β

≤ nt

2(1− θ)β

√
2θβ(1 + β − a)

n
.(2.25)
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Plugging (2.22), (2.24), (2.23) and (2.25) into (2.21), we obtain

ϕF ≤ n

2(1− δ)β

{ tnc2
1

16δβ(1− β)R2 +At+ 1 + 4tβθ
n

+ tβL2

(1− β)N −
at

2

+ θtβ

2(1− β) + 4tβθ
2n

}
+ nt

2(1− θ)β

√
2θβ(1 + β − a)

n

= n

2(1− δ)β

{ tnc2
1

16δβ(1− β)R2 +At+ 1 + 6tβθ
n

+ tβL2

(1− β)N −
at

2

+ θtβ

2(1− β)

}
+ nt

2(1− θ)β

√
2θβ(1 + β − a)

n
.

In particular, at (x0, T ) ∈ B(p,R)× [0, T ], we have

β
|∇u|2

u2 + a log u− uT
u
≤ n

2(1− δ)β

{ nc2
1

16δβ(1− β)R2 +A+ 1
T

+ 6βθ
n

+ βL2

(1− β)N −
a

2 + θβ

2(1− β) +
√

2θβ(1 + β − a)
n

}
.

Hence, we complete the proof of the part (1).
2. If a ≥ 0 then a(β − 1)t2ϕ2µF ≤ 0, |a| = a and

4tβ[(β − 1)tµ− 1]b
n

≤ −4tβ[(β − 1)tµ− 1]θ
n

.

The inequality (2.20) implies

(ϕF )2 ≤ n

2(1− δ)β[(β − 1)tµ− 1]2
{ nc2

1t
2µ

2δβ[(β − 1)tµ− 1]2R2 +At+ 1

+
( θβ

β − 1 −
4βθ
n

)
t2µ(β − 1) + 4tβθ

n
+ at+ 2t2µβL

2

N

}
ϕF

+ n

2(1− δ)β[(β − 1)tµ− 1]2
(
θt2β + ϕ2t2(1 + a)θ

)
.

By the same argument as in the proof of the part (1), we conclude that

ϕF ≤ n

2(1− δ)β[(β − 1)tµ− 1]2
{ nc2

1t
2µ

2δβ[(β − 1)tµ− 1]2R2 +At+ 1

+
( θβ

β − 1 −
4βθ
n

)
t2µ(β − 1) + 4tβθ

n
+ at+ 2t2µβL

2

N

}
+

√
n
(
θt2β + ϕ2t2(1 + a)θ

)
2(1− δ)β[(β − 1)tµ− 1]2 .(2.26)

Since
(
(β − 1)ut− 1

)2 ≥ 2(1− β)µt, we have
1

2(1− δ)β[(β − 1)µt− 1]2
(( θβ

β − 1 −
4βθ
n

)
t2µ(β − 1) + 2t2µβL

2

N

)
≤ 1

2(1− δ)β

(−t
2

( θβ

β − 1 −
4βθ
n

)
+ tβL2

(1− β)N

)
.(2.27)
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Moreover, since
(
(β − 1)ut− 1

)2 ≥ 1, ϕ2 ≤ 1 and 0 < δ < 1, we infer
1

2(1− δ)β[(β − 1)µt− 1]2
(
At+ 1 + 4tβθ

n
+ at

)
≤ 1

2(1− δ)β

(
At+ 1 + 4tβθ

n
+ at

)
(2.28)

and √
n
(
θt2β + ϕ2t2(1− a)θ

)
2(1− δ)β[(β − 1)tµ− 1]2 ≤

√
n
(
θt2β + ϕ2t2(1 + a)θ

)
2(1− δ)β

≤ nt

2(1− θ)β

√
2θβ(1 + β + a)

n
.(2.29)

Combining (2.27), (2.28), (2.29) and (2.26), we conclude that

ϕF ≤ n

2(1− δ)β

{ tnc2
1

16δβ(1− β)R2 +At+ 1 + 4tβθ
n

+ tβL2

(1− β)N

+ θtβ

2(1− β) + 4tβθ
2n + at

}
+

√
n
(
θt2β + ϕ2t2(1 + a)θ

)
2(1− δ)β

= n

2(1− δ)β

{ tnc2
1

16δβ(1− β)R2 +At+ 1 + 6tβθ
n

+ tβL2

(1− β)N

+ θtβ

2(1− β) + at
}

+ nt

2(1− θ)β

√
2θβ(1 + β + a)

n
.

Therefore, for all (x0, T ) ∈ B(p,R)× [0, T ], we have

β
|∇u|2

u2 + a log u− ut
u
≤ n

2(1− δ)β

{
nc2

1
16δβ(1− β)R2 +A+ 1

T
+ 6βθ

n

+ βL2

(1− β)N + a+ θβ

2(1− β) +
√

2θβ(1 + β + a)
n

}
.

The proof of the part (2) is complete. �

3.. Applications

Theorem 3.1. Let (M, g) be a noncompact n-dimensional Riemannian manifold
with RicNV bounded from below by the constant −K := −K(2R), where R > 0,
K(2R) > 0 in the geodesic ball B(p, 2R) with radius 2R around p ∈M and V is a
smooth vector field on M . Let a be a constant and the equation

∂u

∂t
= ∆V u+ au log u

has a positive solution u on M × [0,∞). Then
1. If a ≤ 0, we have

β
|∇u|2

u2 + a log u− ut
u
≤ N + n

2(1− δ)β

( (N + n)c2
1

16δβ(1− β)R2 +A+ 1
t
− a

2

)
;
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2. If a ≥ 0, we have

β
|∇u|2

u2 + a log u− ut
u
≤ N + n

2(1− δ)β

( (N + n)c2
1

16δβ(1− β)R2 +A+ 1
t

+ a
)
,

where c1 and c2 are positive constants, 0 < δ < 1, β = e−2Kt and A is defined by

A =
(
n− 1 +

√
nKR

)
c1 + c2 + 2c2

1
R2 .

Proof. Note that if RicNV ≥ −K then the Laplacian comparison can be read as
follows (see [6])

∆V ρ ≤
√

(n− 1)K coth
(√ K

n− 1ρ
)
≤
√

(n− 1)K + n− 1
ρ

.

Moreover, (2.18) can be estimate by

2c1

R
tµ

1
2 (ϕF ) 3

2 ≤ 2δβ[(β − 1)tµ− 1]2

N + n
(ϕF )2 + (N + n)c2

1t
2µ

2δβ[(β − 1)− 1]2R2 (ϕF ) .

Now, let

A =
(
n− 1 +

√
(n− 1)KR

)
c1 + c2 + 2c2

1
R2

and using the same argument as in the proof of Theorem 1.1, we complete the
proof of Theorem 3.1. �

In particular, if V is −∇f where f is a smooth function on M , we recover the
result of Huang-Ma in [4]. Hence, our result is a generalization of Huang-Ma’s work.
Moreover, let R → ∞ in Theorem 3.1, we obtain the following global gradient
estimate of a general heat equation.

Theorem 3.2. Let (M, g) be a noncompact n-dimensional Riemannian manifold
with RicNV bounded from below by the constant −K, where K > 0 and V is a smooth
vector field on M . Let a be a constant and the equation

∂u

∂t
= ∆V u+ au log u

has a positive solution u on M × [0,∞). Then
1. If a ≤ 0 , we have

β
|∇u|2

u2 + a log u− ut
u
≤ N + n

2(1− δ)β

(1
t
− a

2

)
;

2. If a ≥ 0, we have

β
|∇u|2

u2 + a log u− ut
u
≤ N + n

2(1− δ)β

(1
t

+ a
)
,

where β = e−2Kt and 0 < δ < 1.

Now, similarly to [4], we show a Harnack type inequality.
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Theorem 3.3. Let (M, g) be a noncompact n-dimensional Riemannian manifold
with RicNV bounded from below by the constant −K, where K > 0 and V is the
smooth vector field on M . Suppose that the equation

∂u

∂t
= ∆V u

has a positive solution u on M × [0,∞). Then
1. The solution u satisfies

(3.30) ut
u
− e−2Kt |∇u|2

u2 + e2KtN + n

2t ≥ 0

2. For any points (x1, t1) and (x2, t2) in M × [0,+∞) with 0 < t1 < t2, we
have the following Harnack inequality

u(x1, t1) ≤ u(x2, t2)
( t2
t1

)N+n
2
eφ(x1,x2,t1,t2)+B .

Here

φ(x1, x2, t1, t2) = inf
γ

∫ t

0

1
4e

2Kt|γ̇|2dt , B = N + n

2
(
e2Kt2 − e2Kt1

)
where γ is a parameterized curve with γ(t1) = x1, γ(t2) = x2.

Proof. 1. Applying Theorem 3.2 with a = 0, we have

(3.31) β
|∇u|2

u2 − ut
u
≤ N + n

2(1− δ)βt .

Letting δ → 0 and β = e−2Kt into the inequality (3.31) we obtain
ut
u
− e−2Kt |∇u|2

u2 + e2KtN + n

2t ≥ 0 .

The proof is complete.
2. The proof can be followed by using (3.30) and the argument in [4]. We omit

the details. �
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