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GRADIENT ESTIMATES OF LI YAU TYPE FOR A GENERAL
HEAT EQUATION ON RIEMANNIAN MANIFOLDS

NGUYEN NGoC KHANH

ABSTRACT. In this paper, we consider gradient estimates on complete non-
compact Riemannian manifolds (M, g) for the following general heat equation
ut = Ayu+ aulogu + bu
where a is a constant and b is a differentiable function defined on M x [0, c0). We
suppose that the Bakry-Emery curvature and the N-dimensional Bakry-Emery
curvature are bounded from below, respectively. Then we obtain the gradient

estimate of Li-Yau type for the above general heat equation. Our results
generalize the work of Huang-Ma ([4]) and Y. Li ([6]), recently.

1.. INTRODUCTION

Recently, the weighted Laplacian on smooth metric measure spaces has been
attracted by many researchers. Recall that a triple (M, g,e~fdv) is called a smooth
metric measure space if (M, g) is a Riemannian manifold, f is a smooth function
on M and dv is the volume form with respect to g. On smooth metric measure
spaces, the weighted Laplace operator is defined by

Api=A-—(Vf V)

where A is the Laplace operator on M. On (M, g,e~/dv), the Bakry-Emery cur-
vature Ricy and the N-dimensional Bakry-Emery curvarute Ric}v are defined
by

1
Ricy := Ric + Hess f, RiC]fV = RicffNVf(}@Vf

where Ric, Hess f are the Ricci curvature and the Hessian of f on M, respectively.
An important generalization of the weighted Laplace operator on Riemannian
manifolds is the following operator

Ay = A+<‘/,V>

where V and A are respectively the Levi-Civita connection and the Laplace-Beltrami
operator with respect to g, V' is a smooth vector field on M. In [I] and [6], the
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authors introduced two curvatures
. . 1 . N . 1
RICV := Ric — gﬁ‘/g’RlCV = RlCV — NV ® Vv

where N € N is a positive constant and Ly is the Lie derivative associated to
the vector field V. When V = —V f then two curvatures Ricy, Ricg become the
Bakry-Emery curvature and the N-dimensional Bakry-Emery curvature, respecti-
vely.

In this paper, let (M, g) be a Riemannian manifold and V' be a smooth vector
field on M. We consider the following general heat equation

(1.1) uy = Ayu + aulogu + bu

where a is a constant and b is a function defined on M X [0, 0o) which is differentiable
on M x[0,400). When M is a compact manifold and b = 0, Li ([6]) studied gradient
estimates of Li-Yau type for equation . His results can be considered as a
generalization of the famous work of Li and Yau ([5]). Moreover, Li also studied
gradient estimates of Hamilton type for the equation (|1.1)) when a = b = 0 on
complete noncompact manifolds. In the general case, when a, b are constants and
M is a complete noncompact manifold, Huang and Ma introduced a gradient
estimate of Li-Yau type which is independent of K. Here K > 0 such that —K is
the lower bound of the N-dimensional Bakry-Emery curvature. Then, they derived
the Gaussian lower bound of the heat kernel for the equation u; = Ay u. Recently,
Dung and the author investigated gradient estimates of Hamilton-Souplet-Zhang
type. Our work is a generalization of the results of Huang-Ma, Y. Li and other
mathematicians, see [3], Bl [6] for further discussion and the references there in.

Motivated by the above result, it is very natural for us to look for gradient
estimates of Li-Yau type for the general heat equation . In this paper, under
some natural conditions on the curvatures, we are able to extend the work of
Huang-Ma and Li to complete noncompact manifolds. Our main theorem is as
follows.

Theorem 1.1. Let (M, g) be a complete noncompact n-dimensional Riemannian
manifold with Ricy bounded from below by the constant —K := —K(2R), where
R >0, K(2R) > 0 in the geodesic ball B(p,2R) centered at some fixed point p € M
and V be a smooth vector field on M such that |V | < L for some positive constant
L € R. Suppose that a is a real constant, b is a differentiable function defined on
M x [0,+00) and the general heat equation

0
3—1: = Ayu+ aulogu + bu

has a positive solution u on M x [0,00). Then, for all x € B(p, R), t € (0,0), we
have
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(1) Ifa <0, then

ﬁlvuz‘? +alogu— 1 < 2(1ﬁ5)ﬂ{1655(71w—% o At T

(2) Ifa >0, then

oL +atogu fa(lné)ﬂ{waﬂ(?c% DI P
e e SRR

where ¢ and co are positive constants, B = e 2Kt 0 < § < 1,0 := max{[b|, |b;], |Vb|}
€ R and A is defined by

Ao (n—1++/(n—1)KR+ LR)c1 + ¢y + 2¢3
= =3 _

The paper is organized as follows. In the section 2, we give a proof of Theorem
In section 3, we point out that we can recover the main theorem in [4] by using
Theorem Moreover, we also show some applications to give gradient estimate s
of solution of some general heat equations and prove a Harnack inequality for such
a solution. This is an extension of the work of Huang-Ma and Li.

2.. GRADIENT ESTIMATE OF LI YAU TYPE

To begin with, let us recall the following Laplacian comparison theorem in [IJ.

Theorem 2.1 ([I]). Let (M,g) be a complete noncompact Riemannian manifold
with Ricy bounded from below by the constant —K = —K(2R), where R > 0,
K(2R) > 0 in the geodesic ball B(p,2R) with radius 2R around p € M. Suppose that
V' is a smooth vector field on M satisfying (V,Vp) < v(p) for some nondecreasing
function v(-), where p(x) is the distance from a fixed point p to the considered point
x. Then

-1
Ayp < (n—l)K—l—nT-l—v(p).

Noting that if v(-) is bounded by a positive constant L then we have

n—1

(2.2) Ayp<+/(n—1)K + +L.

To prove the Theorem we first derive the following important lemma.

Lemma 2.2. Let (M,g) be a complete noncompact Riemannian manifold with
Ricy bounded from below by the constant —K := —K(2R), where R > 0, K(2R) > 0
in the geodesic ball B(p,2R) with radius 2R around p € M and V is a smooth
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vector field on M such that |V| is bounded by a positive constant L. For the smooth
function w = logu, where u be a positive solution to (L.1|) then

—2BL2
N

AvF—F, > t{%(Avw)z n ( a(f — 1)) IVw|2—28 (Vw, Vb) + bt—ab}

—2<Vw,VF>—aF—§,

where F = t(8|Vw|? + aw — wy).
Proof. Let w = logu with u be the positive solution to (L.1)) then
wy = |[Vw|? + Ayw + aw +b.

Hence,
(23) AV’U}t = -2 <V’UJ7 th> — AW + Wy — bt .
and
5, F
(2.4) Ayw = (f - 1)|Vw|” — T b
1 F
(2.5) = (1—6)(—aw+wt)—%—b.

Since Ricy > —K, |V| < L and V-Bochner- Weitzenbick formula (see [6]) implies
(2.6) Ay |Vuw|? > %(Avw)Q - 2<K + %2) |Vw|* + 2 (Vw, VAyw) .
By the definition F, it is easy to show that
F, = r + t( — 2K 3|Vw|? + 26 (Vw, Vwy) + aw; — wtt)

t
Ay F = t(ﬂAv(|vw|2) + aAyw — Ath) .

Therefore,
F
AvF — F, = t(BAv([Vw]?) + aAvw — Ayw) — n
(2.7) —t( = 2KB|Vw|* + 28 (Vw, V) + aw, — wy) .
Combining , , and , we obtain
26 9 —2BL? 1 9
_ > 22 _ _ = _
AvF - F, > t{ —(Ayw)” + ( ~ 2ﬂa<1 ﬁ))|w| 26 (Vaw, Vb) +
1 1
— 2 —_— —_— p—
a (1 ﬁ>w—|—a(1 ﬂ)wt ab—|—bt}
—a 1
(2.8) —2(Vuw, VF) + (? - )F
On the other hand, by direct computation, we have
21t L P _ 2
(2.9) a (1 ﬁ)w—i—a(l ﬂ)wt— ;g taB - DIVl
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Substituting (2.9) into (2.8), we get

%(Avw)Q + (_QfZLQ - a(ﬁ—l))|Vw|2—2ﬁ<Vw,Vb) + bt—ab}

F
~2(Vw, VF) —aF — .

AyF—F, > t{

The proof is complete. O
Now, we prove the Theorem [T.1]

Proof of Theorem [I.1l Let £(r) be a cut-off function such that &(r) = 1 for
r<1,&(r)=0forr>20<¢&(r) <1, and

0> &7 (rE (r) > —er,

3 (7") > —Co

for positive constants c¢; and cs.
Put ¢(z) = §(L}§)), it is easy to see that

2 2 )2

@ & &r) R Rz R?
Hence, by the inequality , we have
§(r)'[Vpl* | €(r) Avp
A =
ve R2 + R

—ca (1) n—1

> 2 _

>t [V =TDK + ; +1]

R[ (n— 1)K+"771+L}01+02

R2

>_(n—1+\/(n—1)KR+LR)cl +co
R? '

(2.11)

For T > 0, let (z,t) be a point in Bag(p) x [0, 7] at which ¢ F attains its maximum.
At the point (z,t), we have

V(pF) =0
Ay (pF) <0
F, >0

Since V(oF) = ¢VF + FV¢ = 0, this implies VF = —Fp~ V. It follows that

Ay (pF) = oAy F + FAyo —2Fp 1 |Ve|? <0.
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Substituting (2.10) and (2.11]) into the above inequality, we obtain
2 2
eavr < F (2L - avy)
¥

_ _ 2
(2.12) §F<(" L+ v 1)KR+LR)01+02+201>:FA

R2

where A — (n—l—l—\/n—l R+LR)81+C2+2C1

Combining Lemma [2.2] and 1-) we infer

FAZ> pAyF > oAy F — F

253 5  (—2BL? )
> tw{n(Avw) —i—( N —a(f— )>|Vw| —28(Vw, Vby+b,—ab
F
(213)  +¢{-2(Vw,VF)—aF -~}
¢
Here we used F; < 0. Since 0 = V(pF) = ¢VF + FVp, we have
(2.14)  —2p (Vw, VF) = 2F (Vw, V) > —2F|Vw| V| > —2%¢%F|Vw|.
By , we yield
Fq2 F
(215)  (Avw)®> [(ﬁ —DIVu? - 2] +2[(8 - DIVe - Z](-b).
Plugging ([2.14)) and ( into (2.13)), we obtain
28 , F\? , F
FA> wt{;((w ~DIVel - Z) " +2((8- DIVul? - T)(-b)

— 2
F !
210 Tl —aF - T} - 250t FVul.

By the similar argument as Davies [2] or as Negrin [7], we put p = %. Then

(2.16) can be read as

20t3 (B — 1V)utF — F)? AP+ 4ptB (8 — 1)utF — Fb

n 12 n

23
+ wFtu(

1)) + 26t (Y, V)
F

F
agaFJr&

3
2

+<pt(abfbf)+2Rul 3
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Multiplying both sides of the above inequality by ¢t we arrive at

26[(8 — 1)tp — 1]

(pF)? < Q%tu%gp%F% + (At +1)pF

n
+ {45[(6 - 111)15# mL +tu (2/8 L +a(f— 1)) + a}tchF
(2.17) + 26012 (Vw, Vb) + ©*t*(ab — by) .

Now we want to estimate the right hand side of (2.17). The first term of the
right-hand side of (2.17) can be estimated as follows.

2361(5 — 1)t — 12 ntp
n OO 58— 1~ 1P

(2.18) 25tut (pF)? < (¢F)

with 0 < § < 1, and the third term of the right-hand side of ([2.17) is evaluated as
below.

(2.19) 20223 (Vw, Vb) < 20%#%B|Vb|(uF)? < 28|Vb|(upF + 1) .
By the definition of 6, it is easy to see that
B :=t?8|Vb| < 0t>°3 and C :=t*B|Vb|+*t*(ab — by) < 0> B+t (la| +1)0.

Plugging these above estimates and (2.18)), (2.19)) into (2.17]), we obtain

28[(B-Dtu—1]*(pF)* < 2088~ V)tp— 1 neit’p
n w0 -y )
+ {45[(ﬂ72m71}b+t,u(2€\f +a(6—1)) —|—a}t<p2F

(2.20) + (At + 1)oF + pBoF + C.

Now, we have two cases.
1. If a <0 then atp®F <0, |a| = —a, and

418 = Vtn =1y 448((8 ~ Dt~ 10

n n

By (2.20)), we have

n neit?u

< ST S5 ~ T~ 1F \ - D~ TP

+(a +ﬂ_L§9) 2u(B — 1) + 4w9+2t2 ﬁN }oF

B—1
+ m 5 (0828 + o*t*(1 — a)b) .

(0F)? < AL+
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Using the fact that if a, b > 0 satisfying 22 < ax + b then 2 < a + v/b, the above
inequality implies

n net?
wFS2@4ﬁﬁﬂﬂfbmfﬂfb&ﬂﬂf5wfﬂﬂy

2
+ (a+ 95 _ ?)t%(ﬂ— 1)+ iﬂ +2t2uﬂi}

+ At+1

3-1 N
n(0t20 + ¢?t2(1 — a)d)
220 +¢%1—®MW—JﬂM—H”

Since ((8 — 1)ut — 1)2 >2(1—B)ut+1>1, we have
1 1
< .
201 -8)3((B—ut—1)> ~ 21-0)8

Therefore,
1 neit?p
2(1—6)B((8 — 1)t —1)* 208[(8 — Dut — 12>
n ct
(2.22) = 2(1—46)31653(1 — B)R?’
and
! (14 12
2(1-90)B((8 — Dt — 1) n
1 4130
(2.23) <grmAt o).
where in , we used
(1= B)tu+1)" > 2(1 - B)tp.
Since ((8— 1)ty — 1)2 > 2(1 — B)tu, we have
1 08 4086\, 2 BL?
2(1= )35 — Dt — 12 ((a+ 5-1 ) = 1) 26 )
1 -1 08 440 tBL>
(224) = 2(1—5)67((a+ﬁ—17T)t+(1—6)N)'

Moreover, since ¢? < 1 and 0 < § < 1, we infer

\/ n(0t28 + 2t2(1 — a)b) - \/n(@ﬁﬁ + @2t2(1 — a)b)
31— S)BIF— in — 1~ 31— 0)p

nt 2061+ —a)

(2.25) = 31-6)8 n
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Plugging (2.22), (2.24])), (2.23]) and ( into -, we obtain

n tnc? 4t 50 tBL? at
o < 2(1—5)6{1656(1—@}22 FARIE = AN T 2
% 4t 36 nt 203(1+ 5 — a)
toa—p " m } 2(1-6)3 "
_ n tnc? 6t30 tBL? at
- 2(1_5)5{1655(1—5)32 FATIE =Y AN T 2
ot 3 nt 208(1 + 5 —a)
* 2(1—6)} 2(1-0)p n ’
In particular, at (z9,T) € B(p, R) x [0,T], we have
|V |2 ur n nes 1 650
= +“1°g“*Z<2(1_5)5{165@(1—@}32“”T*i
BL? a G 206(1 + 6 — a)
+(1—5)N7§+2(1—5)Jr n }

Hence, we complete the proof of the part (1).
2. If a >0 then a(8 — 1)t20?uF <0, |a| = a and

Ap[(6 — Vtp—1Jb - 4tp[(8 — V)tn — 10

n n
The inequality implies
n neit?p
P < S 533~ Ty~ TP \ BB s — TP A
03 400V o 1 B0 o O
+(,6—1 n)tu(ﬂ 1)+ - —|—at—|—2t,uN}g0F
+ - S (028 + Q*1(1 + a)b) .

21— 0)Bl(B - Dt — 1]

By the same argument as in the proof of the part (1), we conclude that

n neit?p
o S S8~ i 1P B D~ PR
0 0 0 L?
+ (T—ﬁl - %)t%(ﬁ 1)+ 200t v 21%%}
n(0t23 + ©*2(1 4 a)0)
(2:26) ’ \/2<1 —9)BlA— Dtp— 17
Since ((8 — 1)ut — 1)2 > 2(1 — B)ut, we have

6o BON 2 o BL
2(1—5)5[(&1—1),115—1]2((5—1 4n )t”(ﬁ ) +26 N)

(227) = 2(1 i DE (;(59—61 Bl 4nﬁ) + (1th)1\]) '

+ At+1

215
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Moreover, since ((3 — 1)ut — 1)2 >1, 9?2 <1land0< 6 <1, we infer

1 4tﬂ0
S SRRt
1 4t30
and
\/ n(0t28 + @2t2(1 — a)b) - \/n(@ﬁﬂ + @2t2(1 + a)b)
2(1 = 6)p[(B — Dtp —1]? 2(1-46)p
nt 20B(1 + 3+ a)
(2.29) S - .
Combining ([2.27)), (2.28)), (2.29) and (2.26f), we conclude that
n tnc? 4t36 tpL?
°F<3q —6)ﬁ{166ﬁ(1 —pr T S AN
0t3 4t36 n(0t23 + @2t2(1 + a)b)
toa—g T T at} + \/ 2(1—0)7
B n tnc? 6t50 tB3L?
201 —6)6{165ﬁ(1 — B)R2 AL n (1-B)N
0t3 nt 2068(1+ B+ a)
+2(1—5)+at}+2(1—9)5 n '
Therefore, for all (xo,T) € B(p, R) x [0,T], we have
|V |2 n e 1 666
+alogu— <t S2(1 6)6{165/6’(1 —pre AT Tt
BL2 03 206(1+ B+ a)
Taoan e n }
The proof of the part (2) is complete. O

3.. APPLICATIONS

Theorem 3.1. Let (M, g) be a noncompact n-dimensional Riemannian manifold
with Ricj‘y bounded from below by the constant —K := —K(2R), where R > 0,
K(2R) > 0 in the geodesic ball B(p,2R) with radius 2R around p € M and V is a
smooth vector field on M. Let a be a constant and the equation

0
a—ltb = Ayu+ aulogu

has a positive solution u on M x [0,00). Then
1. Ifa <0, we have

2
ﬁ"

Uy N+n ( (N +n)c? 1 a).

w ~2(1-96)p AT TS

1
Talogu— 1656(1 — B)R2 t 2
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2. Ifa >0, we have
|Vu|? Uy N+n (N +n)c?
1 - —<
Fp talesu—"r<oq 4)5(1655(1 — AR
where ¢ and cy are positive constants, 0 < § < 1, = e 2Kt and A is defined by
(n—14+VnKR)cy + 2 + 2¢3
R? '

Proof. Note that if Ricg > —K then the Laplacian comparison can be read as
follows (see [6])

Avpgx/(n—l)Kcoth( %p)ﬁ (n—-1)K n;l.

n

1
+A+;+@,

A:

Moreover, (2.18) can be estimate by

206[(8 — Dtp —1)°
N+n

(N +n)citn
2565 — 1) — 1P P

C1, 1 3
2—tu2(pF)2 <
RinE(F)z <

Now, let

(pF)* +

Ao (n—1++/(n—1)KR)c; +ca+2¢3
= 2

and using the same argument as in the proof of Theorem 1.1, we complete the
proof of Theorem (3.1 O

In particular, if V is =V f where f is a smooth function on M, we recover the
result of Huang-Ma in [4]. Hence, our result is a generalization of Huang-Ma’s work.
Moreover, let R — oo in Theorem [3.1] we obtain the following global gradient
estimate of a general heat equation.

Theorem 3.2. Let (M, g) be a noncompact n-dimensional Riemannian manifold
with Ricg bounded from below by the constant — K, where K > 0 and V is a smooth
vector field on M. Let a be a constant and the equation

0
a—? = Ayu+ aulogu
has a positive solution u on M x [0,00). Then
1. Ifa <0, we have
[Vul?
w2

Ut N+n /1 «a
_ b T (2 ).
b Falogu == —'2(1—-5ﬂ3(t 2)’

2. Ifa >0, we have
[Vul?

ﬁVu

u2

+alo u—%<M(l+a>
& S 21— )5\t ’

where B = e 2Kt and 0 < 6§ < 1.

Now, similarly to [4], we show a Harnack type inequality.
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Theorem 3.3. Let (M, g) be a noncompact n-dimensional Riemannian manifold
with Ricg bounded from below by the constant —K, where K > 0 and V is the
smooth vector field on M. Suppose that the equation
E = Avu
has a positive solution u on M x [0,00). Then
1.  The solution u satisfies

ur e—21{t|vu|2 +€2KtN+n >0
U u? 2t

2. For any points (x1,t1) and (z2,t2) in M x [0,+00) with 0 < t1 < ta, we
have the following Harnack inequality

(3.30)

N+4n

t
u(z1,61) < u(sz)(f) P ep(mieiita)+B
1

Here
t
. 1 ) N+n
(w1, 22,t1,12) = Hvlf/o 162Kt|7|2dt, B = T(e2Kt2 — i)

where v is a parameterized curve with y(t1) = x1, Y(t2) = 2.
Proof. 1. Applying Theorem 3.2 with a = 0, we have

Vul? N
(3.31) glVul® _ T

w2 uw — 20 —=6)8t
Letting § — 0 and 8 = e~ 2% into the inequality (3.31)) we obtain
us e—2m|vu|2 +62KtN+n >0.
U u? 2t
The proof is complete.

2. The proof can be followed by using (3.30) and the argument in [4]. We omit
the details. O
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