[2] Asheghan, M. M., Míguez, J., Hamidi-Beheshti, M. T., Tavazoe, M. S.:
Robust outer synchronization between two complex networks with fractional order dynamics. Chaos 21 (2011), 033121.
DOI 10.1063/1.3629986 |
MR 3388455
[8] Hauschildt, B., Jason, N. B., Balanov, A., Scholl, E.:
Noise-induced cooperative dynamics and its control in coupled neuron models. Phys. Rev. E 74 (2006), 051906.
DOI 10.1103/physreve.74.051906 |
MR 2293732
[9] Huang, J. J., Li, C. D., Huang, T. W., He, X.:
Finite-time lag synchronization of delayed neural networks. Neurocomputing 139 (2013), 145-149.
DOI 10.1016/j.neucom.2014.02.050
[13] Korniss, G.:
Synchronization in weighted unccorrelated complex networks in a noisy environment: optimization and connections with transport efficiency. Phys. Rev. E 75 (2007), 051121.
DOI 10.1103/physreve.75.051121
[14] Li, H. Y., Hu, Y. A., Wang, R. Q.:
Adaptive finite-time synchronization of cross-strict feedback hyperchaotic systems with parameter uncertainties. Kybernetika 49 (2013), 554-567.
MR 3117914
[15] Li, L., Kurths, J., Peng, H., Yang, Y., Luo, Q.:
Exponentially asymptotic synchronization of uncertain complex time-delay dynamical networks. The European Physical Journal B 86 (2013), 1-9.
DOI 10.1140/epjb/e2013-30517-6 |
MR 3082432
[18] Lynnyk, V., Čelikovský, S.:
On the anti-synchronization detection for the generalized Lorenz system and its applications to secure encryption. Kybernetika 46 (2010), 1-18.
MR 2666891 |
Zbl 1190.93038
[20] Nagail, K. H., Kori, H.:
Noise-induced synchronization of a large population of globally coupled nonidentical oscillators. Phys. Rev.E 81 (2010), 065202.
DOI 10.1103/physreve.81.065202
[21] Pecora, L. M., Carrol, T. L.:
Master stability functions for synchronized coupled system. Phys. Rev. Lett. 80 (1998), 2109-2112.
DOI 10.1103/physrevlett.80.2109
[23] Sun, Y. Z., Li, W., Ruan, J.:
Generalized outer synchronization between complex dynamic networks with time delay and noise perturbation. Commun. Nonliear Sci. Numer. Simul. 18 (2013), 989-998.
DOI 10.1016/j.cnsns.2012.08.040 |
MR 2996611
[24] Sun, F., Peng, H., Luo, Q., Li, L., Yang, Y.:
Parameter identification and projective synchronization between different chaotic systems. Chaos 19 (2009), 023109.
DOI 10.1063/1.3127599 |
MR 2548749 |
Zbl 1309.34106
[25] Sun, Y. Z., Ruan, J.:
Synchronization in coupled time-delayed systems with parameter mismath and noise perturbation. Chaos 19 (2009), 043113.
DOI 10.1063/1.3262488
[27] Tang, H. W., Chen, L., Lu, J. A., Tse, C. K.:
Adaptive synchronization between two nonidentical topological structures. Physica A 387 (2008), 5623-5630.
DOI 10.1016/j.physa.2008.05.047
[28] Wang, G. J., Cao, J. D., Lu, J. Q.:
Outer synchronization between two nonidentical networks with circumstance noise. Physica A 389 (2010), 1480-1488.
DOI 10.1016/j.physa.2009.12.014
[29] Wang, X. F., Chen, G. R.:
Synchronization in scal-free dynamical networks: robustness and fragility. IEEE Trans. Circuits Syst. I 49 (2002), 54-62.
DOI 10.1109/81.974874 |
MR 1874226
[31] Wang, H., Han, Z. Z., Xie, Q. Y., Zhang, W.:
Finite-time chaos control via nonsingular terminal sliding model control. Commun. Nonlinear Sci. Numer. Simulat. 14 (2012), 2728-2733.
DOI 10.1016/j.cnsns.2008.08.013 |
MR 2483882
[32] Wang, W., Li, L., Peng, H., Xiao, J., Yang, Y.:
Synchronization control of memristor-based recurrent neural networks with perturbations. Neural Networks. 53 (2014), 8-14.
DOI 10.1016/j.neunet.2014.01.010 |
Zbl 1307.93038
[33] Wang, W. P., Peng, H. P., Li, L. X., Xiao, J. H., Yang, Y. X.:
Finite-time function projective synchronization in complex multi-links networks with time-varying delay. Neural Process. Lett. 41 (2015), 71-88.
DOI 10.1007/s11063-013-9335-4
[34] Watts, D. J., Strogatz, S. H.:
Collective dynamics of small-world networks. Nature 393 (1998), 440-442.
DOI 10.1038/30918
[36] Yu, W. W., Chen, G. R., Lü, J. H.:
On pinning synchronization of complex dynamical networks.
Zbl 1158.93308
[37] Zhou, X. B., Jiang, M. R., Huang, Y. Q.:
Switched modified function projective synchronization between two complex nonlinear hyperchaotic systems based on adaptive control and parameter identification. Kybernetika 50 (2014), 632-642.
DOI 10.14736/kyb-2014-4-0632 |
MR 3275089 |
Zbl 1311.34120
[38] Zhou, C. S., Motter, A. E., Kurths, J.:
Universality in the synchronization of weighted random networks. Phys. Rev. Lett. 96 (2006), 034101.
DOI 10.1103/physrevlett.96.034101