[2] Banerjee, K. S.:
Weighing Designs for Chemistry, Medicine, Economics, Operations Research, Statistics. Marcel Dekker Inc., New York 1975.
MR 0458751 |
Zbl 0334.62030
[3] Bora-Senta, E., Moyssiadis, C.:
An algorithm for finding exact D- and A-optimal designs with $n$ observations and $k$ two-level factors in the presence of autocorrelated errors. J. Combinat. Math. Combinat. Comput. 30 (1999), 149-170.
MR 1705339 |
Zbl 0937.62074
[5] Ceranka, B., Graczyk, M.:
Optimal chemical balance weighing designs for $v+1$ objects. Kybernetika 39 (2003), 333-340.
MR 1995737 |
Zbl 1248.62128
[6] Ceranka, B., Graczyk, M.:
Robustness optimal spring balance weighing designs for estimation total weight. Kybernetika 47 (2011), 902-908.
MR 2907850 |
Zbl 1274.62492
[12] Ehlich, H.:
Determinantenabschätzungen für binäre Matrizen mit $n\equiv 3 \mathrm{mod} 4$. Math. Zeitschrift 84 (1964), 438-447.
DOI 10.1007/bf01109911 |
MR 0168573
[14] Graczyk, M.:
A-optimal biased spring balance weighing design. Kybernetika 47 (2011), 893-901.
MR 2907849 |
Zbl 1274.62495
[16] Harman, R., Bachratá, A., Filová, L.:
Construction of efficient experimental designs under multiple resource constraints. Appl. Stochast. Models in Business and Industry 32 (2015), 1, 3-17.
DOI 10.1002/asmb.2117 |
MR 3460885
[18] Jenkins, G. M., Chanmugam, J.:
The estimation of slope when the errors are autocorrelated. J. Royal Statist. Soc., Ser. B (Statistical Methodology) 24 (1962), 199-214.
MR 0138154 |
Zbl 0116.11401
[22] Katulska, K., Smaga, Ł.: A note on D-optimal chemical balance weighing designs and their applications. Colloquium Biometricum 43 (2013), 37-45.
[23] Katulska, K., Smaga, Ł.: On highly D-efficient designs with non-negatively correlated observations. REVSTAT - Statist. J. (accepted).
[27] Pukelsheim, F.:
Optimal Design of Experiments. John Wiley and Sons Inc., New York 1993.
MR 1211416 |
Zbl 1101.62063
[28] Team, R Core:
R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL
http://www.R-project.org/ (2015).
[29] Smaga, Ł.: D-optimal Chemical Balance Weighing Designs with Various Forms of the Covariance Matrix of Random Errors. Ph.D. Thesis, Adam Mickiewicz University, 2013 (in polish).
[30] Smaga, Ł.:
Necessary and sufficient conditions in the problem of D-optimal weighing designs with autocorrelated errors. Statist. Probab. Lett. 92 (2014), 12-16.
DOI 10.1016/j.spl.2014.04.027 |
MR 3230466