Previous |  Up |  Next

Article

Keywords:
project management; task threat; criticalness potential; multiple criteria evaluation
Summary:
The paper proposes the method evaluating tasks criticalness potential, which has been analysed by various project management tools. The criticalness potential of tasks, as opposed to a simple differentiation of tasks to critical and non-critical using the CPM method, considers not only time, but also resource, cost and topological aspects of a project schedule. In the paper, the tasks criticalness potential is defined applying task criticalness indicators which are further used as input for three various multiple criteria decision models. These models enable taking into account the principal project success criteria, i. e. time, resources and cost. The tasks criticalness potential cannot be determined using one indicator or one characteristic only. A selected multi-criteria approach based on task criticalness indicators differentiates between tasks more and less threatening to a project. This paper suggests different multiple criteria approaches to the quantification of task criticalness potential, compares them and discusses their advantages and disadvantages.
References:
[1] Almeida., A. T. de: Multicriteria model for selection of preventive maintenance intervals. Quality and Reliability Engineering International 28 (2012), 585-593. DOI 10.1002/qre.1415
[2] Almeida, A. T. de, Ferreira, R. J. P., Cavalcante, C. A. V.: A review of the use of multicriteria and multi-objective models in maintenance and reliability. IMA J. Management Math. 26 (2015), 249-271. DOI 10.1093/imaman/dpv010 | MR 3365477
[3] Armstrong, M.: A Handbook of Human Resource Management Practice. Tenth edition. Kogan Page, London 2006.
[4] Bartoška, J., Brožová, H., Šubrt, T., Rydval, J.: Incorporating practitioners' expectations to project management teaching. In: Efficiency and Responsibility in Education 2013 (R. Kvasnička, ed.), Czech University of Life Sciences, Prague 2013, pp. 16-23.
[5] Bergatinos, G., Sanchez, E.: How to distribute costs associated with a delayed project. Ann. Oper. Res. 109 (2002), 159-174. DOI 10.1023/a:1016300218643 | MR 1929729
[6] Bowers, J.: Identifying critical activities in stochastic resource constrained networks. Omega - Int. J. Management Sci. 24 (1996), 37-46. DOI 10.1016/0305-0483(95)00046-1
[7] Branzei, R., Ferrari, G., Fragnelli, V., Tijs, S.: Two approaches to the problem of sharing delay costs in joint projects. Ann. Oper. Res. 109 (2002), 357-372. DOI 10.1023/a:1016372707256 | MR 1929740 | Zbl 1005.91010
[8] Castro, J., Gomez, D., Tejada, J.: A project game for PERT networks. Oper. Res. Lett. 35 (2007), 791-798. DOI 10.1016/j.orl.2007.01.003 | MR 2361049 | Zbl 1180.90030
[9] Castro, J., Gomez, D., Tejada, J.: A polynomial rule for the problem of sharing delay costs in PERT networks. Comput. Oper. Res. 35 (2008), 2376-2387. DOI 10.1016/j.cor.2006.11.003 | MR 2585228 | Zbl 1180.90031
[10] Chanas, S., Zielinski, P.: On the hardness of evaluating criticality of activities in a planar network with duration intervals. Oper. Res. Lett. 31 (2003), 53-59. DOI 10.1016/s0167-6377(02)00174-8 | MR 1946735 | Zbl 1036.90024
[11] Chen, C. T., Huang, S. F.: Applying fuzzy method for measuring criticality in project network. Inform. Sci. 177 (2007), 2448-2458. DOI 10.1016/j.ins.2007.01.035 | Zbl 1124.90013
[12] Cho, J. G., Yum, B. J.: An uncertainty importance measure of activities in PERT networks. Int. J. Project Management 35 (1997), 2737-2770. DOI 10.1080/002075497194426 | Zbl 0942.90553
[13] Clegg, D., Barker, R.: Case Method Fast-Track: A RAD Approach. Addison-Wesley 2004.
[14] Cooke-Davies, T.: The "real" success factors on projects. Int. J. Project Management 20 (2002), 185-190. DOI 10.1016/s0263-7863(01)00067-9
[15] Cruz, S., García, J., Herrerías, R.: Stochastic models alternative to the classical PERT for the treatment of the risk: mesokurtic and of constant variance. Central Europ. J. Oper. Res. 7 (1999), 159-175. MR 1739489
[16] Doran, G. T.: There's a S.M.A.R.T. way to write management's goals and objectives. Management Review 70 (1981), 35-36.
[17] Estévez-Fernández, A., Borm, P., Hamers, H.: Project game. Int. J. Game Theory 36 (2007), 149-176. DOI 10.1007/s00182-006-0058-x | MR 2342157
[18] Ghomi, S. M. T. Fatemi, Teimouri, E.: Path critical index and activity critical index in PERT networks. Europ. J. Oper. Res. 141 (2002), 147-152. DOI 10.1016/s0377-2217(01)00268-5 | MR 1925391 | Zbl 0998.90009
[19] Gong, D., Rowings, J. E.: Calculation of safe float use in risk-analysis-oriented network scheduling. Int. J. Project Management 13 (1995), 187-194. DOI 10.1016/0263-7863(94)00004-v
[20] Hartman, F., Ashrafi, R.: Development of the SMART project planning framework. Int. J. Project Management 22 (2004), 499-510. DOI 10.1016/j.ijproman.2003.12.003
[21] Haughey, D.: BOSCARD (Terms of Reference). Project Smart 2000-2011. http://www.projectsmart.co.uk/boscard.html Accessed 12 January 2011.
[22] Hwang, Ch. L., Yoon, K.: Multiple Attribute Decision Making. Springer Verlang, Berlin Heidelberg, New York 1981. DOI 10.1007/978-3-642-48318-9 | MR 0610245 | Zbl 0563.90038
[23] Jakubík, M.: Propensity to criticalness in the PERT method, the expectation of time and distance of activities from project beginning. In: Proc. 29th International Conference on Mathematical Methods in Economics 2011 (J. Jablonsky ed.), Univ. Econom., Fac. Informat. and Stat., Prague 2011.
[24] Jr., J. E. Kelley: Critical-path planning and scheduling: Mathematical basis. Oper. Res. 9 (1961), 296-320. DOI 10.1287/opre.9.3.296 | MR 0143655 | Zbl 0098.12103
[25] Lenahan, T.: Turnaround, Shutdown and Outage Management: Effective Planning and Step-by-Step Execution of Planned Maintenance Operations. Butterworth-Heinemann, An imprint of Elsevier, 2006.
[26] Madadi, M., Iranmanesh, H.: A management oriented approach to reduce a project duration and its risk (variability). Europ. J. Oper. Res. 219 (2012), 751-761. DOI 10.1016/j.ejor.2012.01.006
[27] Malcolm, D. G., Roseboom, J. R., Clark, C. E., Fazar, W.: Application of a technique for research and development program evaluation. Oper. Res. 7 (1959), 646-669. DOI 10.1287/opre.7.5.646 | Zbl 1255.90070
[28] Martin, J. J.: Distribution of the time through a directed, acyclic network. Oper. Res. 13 (1965), 46-66. DOI 10.1287/opre.13.1.46 | MR 0191650 | Zbl 0137.39302
[29] Mateo, J. R. San Cristóbal: Management Science, Operations Research and Project Management - Modelling, Evaluation, Scheduling, Monitoring. Gower Publishing 2015.
[30] Mota, C. M. M., Almeida, A. T. de: A multicriteria decision model for assigning priority classes to activities in project management. Ann. Oper. Res. 199 (2011), 361-372. DOI 10.1007/s10479-011-0853-z | Zbl 1251.90260
[31] Roy, B.: The outranking approach and the foundations of ELECTRE methods. Theory and Decision31 (1991), 49-73. DOI 10.1007/bf00134132 | MR 1118821
[32] Roy, B., Mousseau, W.: A theoretical framework for analysing the notion of relative importance of criteria. J. Multi-criteria Decision Analysis 5 (1996), 145-149. DOI 10.1002/(sici)1099-1360(199606)5:2<145::aid-mcda99>3.0.co;2-5 | Zbl 0847.90002
[33] Saaty, T. L.: Relative Measurement and its generalization in decision making: why pairwise comparisons are central in mathematics for the measurement of intangible factors: The analytic hierarchy/network process. Rev. R. Acad. Cien. Serie A. Mat. 102 (2008), 251-318. DOI 10.1007/bf03191825 | MR 2479460 | Zbl 1177.62009
[34] Smith, M., Erwin., J.: Role \& Responsibility Charting (RACI). Project Management Forum 2005.
[35] Tofallis, C.: Add or multiply? A tutorial on ranking and choosing with multiple criteria. A Tutorial on Ranking and Choosing with Multiple Criteria. INFORMS Transactions on Education 14 (2014), 109-119. DOI 10.1287/ited.2013.0124
[36] Weaver, P.: A brief history of scheduling - Back to the future. myPrimavera konference, Australia 2006.
[37] Wideman, R. M.: Project and Program Risk Management. Project Management Institute 1992.
[38] Williams, T. M.: Criticality in stochastic networks. J. Oper. Res. Soc. 43 (1992), 353-357. DOI 10.1038/sj/jors/0430407 | Zbl 0825.90400
[39] Yakhchali, S. H.: A path enumeration approach for the analysis of critical activities in fuzzy networks. Inform. Sci. 204 (2012), 23-35. DOI 10.1016/j.ins.2012.01.025 | Zbl 1250.90040
[40] Yemm, G.: Essential Guide to Leading Your Team: How to Set Goals, Measure Performance and Reward Talent. Pearson Education, Harlow 2013.
Partner of
EuDML logo