Previous |  Up |  Next

Article

Keywords:
residual lifetime; inactivity time; stochastic order; dependence; reliability
Summary:
In this paper, we consider the linear and circular consecutive $k$-out-of-$n$ systems consisting of arbitrarily dependent components. Under the condition that at least $n-r+1$ components ($r\leq n$) of the system are working at time $t$, we study the reliability properties of the residual lifetime of such systems. Also, we present some stochastic ordering properties of residual lifetime of consecutive $k$-out-of-$n$ systems. In the following, we investigate the inactivity time of the component with lifetime $T_{r:n}$ at the system level for the consecutive $k$-out-of-$n$ systems under the condition that the system is not working at time $t>0$, and obtain some stochastic properties of this conditional random variable.
References:
[1] Aki, S., Hirano, K.: Lifetime distribution and estimation problems of consecutive $k$-out-of-$n$:F systems. Ann. Inst. Stat. Math. 48 (1996), 185-199. DOI 10.1007/BF00049298 | MR 1392525 | Zbl 0857.62094
[2] Asadi, M.: On the mean past lifetime of the components of a parallel system. J. Stat. Plann. Inference 136 (2006), 1197-1206. DOI 10.1016/j.jspi.2004.08.021 | MR 2253758 | Zbl 1088.62120
[3] Asadi, M., Bayramoglu, I.: The mean residual life function of a $k$-out-of-$n$ structure at the system level. IEEE Trans. Reliab. 55 (2006), 314-318. DOI 10.1109/TR.2006.874934 | MR 2412846
[4] Bairamov, I., Ahsanullah, M., Akhundov, I.: A residual life function of a system having parallel or series structures. J. Stat. Theory Appl. 1 (2002), 119-131. MR 1952705
[5] Bairamov, I., Gurler, S., Ucer, B.: On the mean remaining strength of the {$k$}-out-of-{$n$}:{$F$} system with exchangeable components. Commun. Stat., Simulation Comput. 44 (2015), 1-13. DOI 10.1080/03610918.2013.763979 | MR 3238547 | Zbl 1325.62187
[6] Boland, P. J., Samaniego, F. J.: Stochastic ordering results for consecutive $k$-out-of-$n$:F systems. IEEE Trans. Reliab. 53 (2004), 7-10. DOI 10.1109/TR.2004.824830 | MR 2182122
[7] Chang, G. J., Cui, L., Hwang, F. K.: Reliabilities of consecutive-{$k$} systems. Network Theory and Applications 4 Kluwer Academic Publishers, Dordrecht (2000). MR 1813954 | Zbl 0988.90010
[8] Chen, R. W., Hwang, F. K.: Failure distributions of consecutive-$k$-out-of-$n$:F systems. IEEE Trans. Reliab. 34 (1985), 338-341. DOI 10.1109/TR.1985.5222180 | Zbl 0588.62181
[9] Eryılmaz, S.: On the lifetime distribution of consecutive $k$-out-of-$n$:F system. IEEE Trans. Reliab. 56 (2007), 35-39. DOI 10.1109/TR.2006.890902 | MR 2749971
[10] Eryılmaz, S.: Reliability properties of consecutive $k$-out-of-$n$ systems of arbitrarily dependent components. Reliab. Eng. Syst. Saf. 94 (2009), 350-356. DOI 10.1016/j.ress.2008.03.027 | MR 2749971
[11] Eryılmaz, S.: Conditional lifetimes of consecutive $k$-out-of-$n$ systems. IEEE Trans. Reliab. 59 (2010), 178-182. DOI 10.1109/TR.2010.2040775 | MR 2987530
[12] Eryılmaz, S.: Circular consecutive {$k$}-out-of-{$n$} systems with exchangeable dependent components. J. Stat. Plann. Inference 141 (2011), 725-733. DOI 10.1016/j.jspi.2010.07.014 | MR 2732943 | Zbl 1214.62103
[13] Jia, X., Cui, L., Yan, J.: A study on the reliability of consecutive {$k$}-out-of-{$n$}: G systems based on copula. Comm. Stat., Theory Methods 39 (2010), 2455-2472. DOI 10.1080/03610921003778134 | MR 2755631 | Zbl 1201.62109
[14] Khaledi, B.-E., Shaked, M.: Ordering conditional lifetimes of coherent systems. J. Stat. Plann. Inference 137 (2007), 1173-1184. DOI 10.1016/j.jspi.2006.01.012 | MR 2301471 | Zbl 1111.60012
[15] Kochar, S., Xu, M.: On residual lifetimes of {$k$}-out-of-{$n$} systems with nonidentical components. Probab. Eng. Inf. Sci. 24 (2010), 109-127. DOI 10.1017/S0269964809990167 | MR 2575845 | Zbl 1190.90060
[16] Koutras, M. V., Triantafyllou, I. S., Eryılmaz, S.: Stochastic comparisons between lifetimes of reliability systems with exchangeable components. Methodol. Comput. Appl. Probab. 22 (2014), DOI 10.1007/s11009-014-9433-4. DOI 10.1007/s11009-014-9433-4 | MR 3564854
[17] Kuo, W., Zuo, M. J.: Optimal Reliability Modeling: Principles and Applications. John Wiley & Sons (2003).
[18] Li, X., Zhang, Z.: Some stochastic comparisons of conditional coherent systems. Appl. Stoch. Models Bus. Ind. 24 (2008), 541-549. DOI 10.1002/asmb.715 | MR 2473025
[19] Li, X., Zhao, P.: Stochastic comparison on general inactivity time and general residual life of {$k$}-out-of-{$n$} systems. Commun. Stat., Simulation Comput. 37 (2008), 1005-1019. DOI 10.1080/03610910801943784 | MR 2744074 | Zbl 1162.60307
[20] Navarro, J., Balakrishnan, N., Samaniego, F. J.: Mixture representations of residual lifetimes of used systems. J. Appl. Probab. 45 (2008), 1097-1112. DOI 10.1017/S0021900200005003 | MR 2484164 | Zbl 1155.60305
[21] Navarro, J., Eryılmaz, S.: Mean residual lifetimes of consecutive-{$k$}-out-of-{$n$} systems. J. Appl. Probab. 44 (2007), 82-98. DOI 10.1239/jap/1175267165 | MR 2312989 | Zbl 1135.62084
[22] Navarro, J., Rubio, R.: A note on necessary and sufficient conditions for ordering properties of coherent systems with exchangeable components. Nav. Res. Logist. 58 (2011), 478-489. DOI 10.1002/nav.20463 | MR 2857517 | Zbl 1218.90068
[23] Navarro, J., Ruiz, J. M., Sandoval, C. J.: Properties of coherent systems with dependent components. Commun. Stat., Theory Methods 36 (2007), 175-191. DOI 10.1080/03610920600966316 | MR 2391869 | Zbl 1121.60015
[24] Navarro, J., Spizzichino, F.: Comparisons of series and parallel systems with components sharing the same copula. Appl. Stoch. Models Bus. Ind. 26 (2010), 775-791. DOI 10.1002/asmb.819 | MR 2752386 | Zbl 1226.90031
[25] Rezapour, M., Salehi, E. T., Alamatsaz, M. H.: Stochastic comparison of residual and past lifetimes of {$(n-k+1)$}-out-of-{$n$} systems with dependent components. Commun. Stat., Theory Methods 42 (2013), 2185-2199. DOI 10.1080/03610926.2011.606484 | MR 3053319 | Zbl 1282.60025
[26] Sadegh, M. K.: Mean past and mean residual life functions of a parallel system with nonidentical components. Commun. Stat., Theory Methods 37 (2008), 1134-1145. DOI 10.1080/03610920701713278 | MR 2408294 | Zbl 1138.62065
[27] Sadegh, M. K.: A note on the mean residual life function of a coherent system with exchangeable or nonidentical components. J. Stat. Plann. Inference 141 (2011), 3267-3275. DOI 10.1016/j.jspi.2011.04.013 | MR 2796030 | Zbl 1216.62158
[28] Salehi, E. T., Asadi, M.: Results on the past lifetime of {$(n-k+1)$}-out-of-{$n$} structures with nonidentical components. Metrika 75 (2012), 439-454. DOI 10.1007/s00184-010-0335-3 | MR 2922155 | Zbl 1300.62103
[29] Salehi, E., Asadi, M., Badia, F. G.: Assessing the reliability and the stochastic properties of the components of consecutive $k$-out-of-$n$ systems. (to appear) in J. Appl. Stat. Sci. (2016).
[30] Salehi, E. T., Asadi, M., Eryılmaz, S.: Reliability analysis of consecutive {$k$}-out-of-{$n$} systems with non-identical components lifetimes. J. Stat. Plann. Inference 141 (2011), 2920-2932. DOI 10.1016/j.jspi.2011.03.014 | MR 2787755 | Zbl 1213.62163
[31] Salehi, E. T., Asadi, M., Eryılmaz, S.: On the mean residual lifetime of consecutive {$k$}-out-of-{$n$} systems. Test 21 (2012), 93-115. DOI 10.1007/s11749-011-0237-3 | MR 2912973 | Zbl 1262.90055
[32] Sfakianakis, M. E., Papastavridis, S. G.: Reliability of a general consecutive-$k$-out-of-$n$:F system. IEEE Trans. Reliab. 42 (1993), 491-496. DOI 10.1109/24.257837 | Zbl 0800.90480
[33] Shaked, M., Shanthikumar, J. G.: Stochastic Orders and Their Applications. Probability and Mathematical Statistics Academic Press, Boston (1994). MR 1278322 | Zbl 0806.62009
[34] Shanthikumar, J. G.: Lifetime distribution of consecutive-$k$-out-of-$n$:F systems with exchangeable lifetimes. IEEE Trans. Reliab. 34 (1985), 480-483. DOI 10.1109/TR.1985.5222236 | Zbl 0588.62180
[35] Tavangar, M., Asadi, M.: A study on the mean past lifetime of the components of {$(n-k+1)$}-out-of-{$n$} system at the system level. Metrika 72 (2010), 59-73. DOI 10.1007/s00184-009-0241-8 | MR 2658206 | Zbl 1189.62161
[36] Tavangar, M., Asadi, M.: The inactivity time of exchangeable components of {$k$}-out-of-{$n$} structures. Sankhy$\bar a$, Ser. B 77 (2015), 141-164. MR 3337568 | Zbl 1312.60013
[37] Zhang, Z.: Ordering conditional general coherent systems with exchangeable components. J. Stat. Plann. Inference 140 (2010), 454-460. DOI 10.1016/j.jspi.2009.07.029 | MR 2558377 | Zbl 1229.62137
[38] Zhao, P., Li, X., Balakrishnan, N.: Conditional ordering of {$k$}-out-of-{$n$} systems with independent but nonidentical components. J. Appl. Probab. 45 (2008), 1113-1125. DOI 10.1239/jap/1231340237 | MR 2484165 | Zbl 1155.60309
Partner of
EuDML logo