[5] Brouwer, A. E.:
Toughness and spectrum of a graph. Linear Algebra Appl. 226/228 (1995), 267-271.
MR 1344566 |
Zbl 0833.05048
[6] Brouwer, A. E., Haemers, W. H.:
Spectra of Graphs. Universitext Springer, Berlin (2012).
MR 2882891 |
Zbl 1231.05001
[8] Chartrand, G., Kapoor, S. F., Lesniak, L., Lick, D. R.: Generalized connectivity in graphs. Bull. Bombay Math. Colloq. 2 (1984), 1-6.
[14] Day, D. P., Oellermann, O. R., Swart, H. C.:
Bounds on the size of graphs of given order and $l$-connectivity. Discrete Math. 197/198 (1999), 217-223.
MR 1674864 |
Zbl 0927.05051
[18] Godsil, C., Royle, G.:
Algebraic Graph Theory. Graduate Texts in Mathematics 207 Springer, New York (2001).
MR 1829620 |
Zbl 0968.05002
[19] Gu, X.:
Spectral conditions for edge connectivity and packing spanning trees in multigraphs. Linear Algebra Appl. 493 (2016), 82-90.
MR 3452727 |
Zbl 1329.05189
[21] Gu, X.:
Connectivity and Spanning Trees of Graphs. PhD Dissertation, West Virginia University (2013).
MR 3211328
[22] Gu, X., Lai, H.-J., Li, P., Yao, S.:
Edge-disjoint spanning trees, edge connectivity and eigenvalues in graphs. J. Graph Theory 81 (2016), 16-29.
DOI 10.1002/jgt.21857 |
MR 3431289
[24] Krivelevich, M., Sudakov, B.:
Pseudo-random graphs. More Sets, Graphs and Numbers 199-262 E. Győri Bolyai Soc. Math. Stud. 15 Springer, Berlin (2006).
MR 2223394 |
Zbl 1098.05075
[28] Liu, Q., Hong, Y., Gu, X., Lai, H.-J.:
Note on edge-disjoint spanning trees and eigenvalues. Linear Algebra Appl. 458 (2014), 128-133.
MR 3231810 |
Zbl 1295.05146
[29] Liu, Q., Hong, Y., Lai, H.-J.:
Edge-disjoint spanning trees and eigenvalues. Linear Algebra Appl. 444 (2014), 146-151.
MR 3145835 |
Zbl 1295.05146
[31] Lu, H.:
Regular factors of regular graphs from eigenvalues. Electron. J. Comb. 17 (2010), Research paper 159, 12 pages.
MR 2745712 |
Zbl 1204.05057