Previous |  Up |  Next

Article

Keywords:
determinant inequality; partial trace
Summary:
Fiedler and Markham (1994) proved $$ \Big (\frac {\mathop {\rm det } \widehat {H}}{k}\Big )^{ k}\ge \mathop {\rm det } H, $$ where $H=(H_{ij})_{i,j=1}^n$ is a positive semidefinite matrix partitioned into $n\times n$ blocks with each block $k\times k$ and $\widehat {H}=(\mathop {\rm tr} H_{ij})_{i,j=1}^n$. We revisit this inequality mainly using some terminology from quantum information theory. Analogous results are included. For example, under the same condition, we prove $$ \mathop {\rm det }(I_n+\widehat {H}) \ge \mathop {\rm det }(I_{nk}+kH)^{{1}/{k}}.$$
References:
[1] Bhatia, R.: Positive Definite Matrices. Texts and Readings in Mathematics 44. New Delhi: Hindustan Book Agency, Princeton Series in Applied Mathematics Princeton University Press, Princeton (2007). MR 2284176 | Zbl 1125.15300
[2] Bourin, J.-C., Lee, E.-Y., Lin, M.: Positive matrices partitioned into a small number of Hermitian blocks. Linear Algebra Appl. 438 (2013), 2591-2598. MR 3005316 | Zbl 1262.15037
[3] Pillis, J. de: Transformations on partitioned matrices. Duke Math. J. 36 (1969), 511-515. DOI 10.1215/S0012-7094-69-03661-8 | MR 0325649 | Zbl 0186.33703
[4] Fiedler, M., Markham, T. L.: On a theorem of Everitt, Thompson, and de Pillis. Math. Slovaca 44 (1994), 441-444. MR 1301952 | Zbl 0828.15023
[5] Hiroshima, T.: Majorization criterion for distillability of a bipartite quantum state. Phys. Rev. Lett. 91 (2003), no. 057902, 4 pages. http://dx.doi.org/10.1103/PhysRevLett.91.057902 DOI 10.1103/PhysRevLett.91.057902
[6] Horn, R. A., Johnson, C. R.: Matrix Analysis. Cambridge University Press, Cambridge (2013). MR 2978290 | Zbl 1267.15001
[7] Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223 (1996), 1-8. DOI 10.1016/S0375-9601(96)00706-2 | MR 1421501 | Zbl 1037.81501
[8] Jenčová, A., Ruskai, M. B.: A unified treatment of convexity of relative entropy and related trace functions, with conditions for equality. Rev. Math. Phys. 22 (2010), 1099-1121. DOI 10.1142/S0129055X10004144 | MR 2733251 | Zbl 1218.81025
[9] Lin, M.: Some applications of a majorization inequality due to Bapat and Sunder. Linear Algebra Appl. 469 (2015), 510-517. MR 3299075 | Zbl 1310.15033
[10] Petz, D.: Quantum Information Theory and Quantum Statistics. Theoretical and Mathematical Physics Springer, Berlin (2008). MR 2363070 | Zbl 1145.81002
[11] Rastegin, A. E.: Relations for symmetric norms and anti-norms before and after partial trace. J. Stat. Phys. 148 (2012), 1040-1053. DOI 10.1007/s10955-012-0569-8 | MR 2975521
Partner of
EuDML logo