Previous |  Up |  Next

Article

Keywords:
sign semipositivity; semipositive matrix; M-matrix; spectrum; equivalence
Summary:
Our purpose is to present a number of new facts about the structure of semipositive matrices, involving patterns, spectra and Jordon form, sums and products, and matrix equivalence, etc. Techniques used to obtain the results may be of independent interest. Examples include: any matrix with at least two columns is a sum, and any matrix with at least two rows, a product, of semipositive matrices. Any spectrum of a real matrix with at least $2$ elements is the spectrum of a square semipositive matrix, and any real matrix, except for a negative scalar matrix, is similar to a semipositive matrix. M-matrices are generalized to the non-square case and sign patterns that require semipositivity are characterized.
References:
[1] Berman, A., Neuman, M., Stern, R. J.: Nonnegative Matrices in Dynamic Systems. Pure and Applied Mathematics, A Wiley Interscience Publication John Wiley and Sons, New York (1989). MR 1019319
[2] Berman, A., Plemmons, R. J.: Nonnegative Matrices in the Mathematical Sciences. SIAM, Philadelphia Classics in Applied Mathematics (1994). MR 1298430 | Zbl 0815.15016
[3] Berman, A., Plemmons, R. J.: Nonnegative Matrices in the Mathematical Sciences. Computer Science and Applied Mathematics Academic Press, New York (1979). MR 0544666 | Zbl 0484.15016
[4] Berman, A., Ward, R. C.: Classes of stable and semipositive matrices. Linear Algebra Appl. 21 (1978), 163-174. DOI 10.1016/0024-3795(78)90040-X | MR 0480585 | Zbl 0386.15015
[5] Berman, A., Ward, R. C.: Stability and semipositivity of real matrices. Bull. Am. Math. Soc. 83 (1977), 262-263. DOI 10.1090/S0002-9904-1977-14295-X | MR 0422309 | Zbl 0352.15010
[6] Fiedler, M., Pták, V.: Some generalizations of positive definiteness and monotonicity. Number. Math. 9 163-172 (1966). DOI 10.1007/BF02166034 | MR 0209309 | Zbl 0148.25801
[7] Gale, D.: The Theory of Linear Economic Models. McGraw-Hill Book, New York (1960). MR 0115801
[8] Horn, R., Johnson, C. R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991). MR 1091716 | Zbl 0729.15001
[9] Horn, R. A., Johnson, C. R.: Matrix Analysis. Cambridge University Press, Cambridge (1985). MR 0832183 | Zbl 0576.15001
[10] Johnson, C. R., Kerr, M. K., Stanford, D. P.: Semipositivity of matrices. Linear Multilinear Algebra 37 (1994), 265-271. DOI 10.1080/03081089408818329 | MR 1310969 | Zbl 0815.15018
[11] Johnson, C. R., McCuaig, W. D., Stanford, D. P.: Sign patterns that allow minimal semipositivity. Linear Algebra Appl. 223/224 (1995), 363-373. MR 1340701 | Zbl 0829.15017
[12] Johnson, C. R., Stanford, D. P.: Qualitative semipositivity. Combinatorial and graph-theoretical problems in linear algebra IMA Vol. Math. Appl. 50 Springer, New York (1993), 99-105. MR 1240958 | Zbl 0791.15016
[13] Johnson, C. R., Zheng, T.: Equilibrants, semipositive matrices, calculation and scaling. Linear Algebra Appl. 434 (2011), 1638-1647. MR 2775743 | Zbl 1211.15045
[14] Mangasarian, O. L.: Nonlinear Programming. McGraw-Hill Book, New York (1969). MR 0252038 | Zbl 0194.20201
[15] Mangasarian, O. L.: Characterizations of real matrices of monotone kind. SIAM Review 10 439-441 (1968). DOI 10.1137/1010095 | MR 0237537 | Zbl 0216.06203
[16] Vandergraft, J. S.: Applications of partial orderings to the study of positive definiteness, monotonicity, and convergence of iterative methods for linear systems. SIAM J. Numer. Anal. 9 (1972), 97-104. DOI 10.1137/0709011 | MR 0309971 | Zbl 0234.65041
[17] Werner, H. J.: Characterizations of minimal semipositivity. Linear Multilinear Algebra 37 (1994), 273-278. DOI 10.1080/03081089408818330 | MR 1310970 | Zbl 0815.15017
Partner of
EuDML logo