[1] Benzi, M., Szyld, D. B., Duin, A. C. N. van:
Orderings for incomplete factorization preconditioning of nonsymmetric problems. SIAM J. Sci. Comput. 20 (1999), 1652-1670.
DOI 10.1137/S1064827597326845 |
MR 1694677
[2] Boley, D., Ranjan, G., Zhang, Z.-L.:
Commute times for a directed graph using an asymmetric Laplacian. Linear Algebra Appl. 435 (2011), 224-242.
MR 2782776 |
Zbl 1226.05125
[3] Bolten, M., Friedhoff, S., Frommer, A., Heming, M., Kahl, K.:
Algebraic multigrid methods for Laplacians of graphs. Linear Algebra Appl. 434 (2011), 2225-2243.
MR 2776793 |
Zbl 1217.65063
[4] Cuthill, E., McKee, J.:
Reducing the bandwidth of sparse symmetric matrices. Proc. 24th Nat. Conf. of the ACM, ACM Publ P-69, Association for Computing Machinery, New York, 1969 157-172 doi:10.1145/800195.805928.
DOI 10.1145/800195.805928
[6] Corso, G. M. Del, Romani, F.:
Heuristic spectral techniques for the reduction of bandwidth and work-bound of sparse matrices. Numer. Algorithms 28 (2001), 117-136.
DOI 10.1023/A:1014082430392 |
MR 1887751
[10] George, J. A.: Computer Implementation of the Finite Element Method. Doctoral Dissertation, Stanford University, Stanford (1971).
[11] George, A., Liu, J. W.-H.:
Computer Solution of Large Sparse Positive Definite Systems. Prentice-Hall Series in Computational Mathematics Prentice-Hall, Englewood Cliffs (1981).
MR 0646786 |
Zbl 0516.65010
[13] Gross, J. L., Yellen, J., eds.:
Handbook of Graph Theory. Discrete Mathematics and Its Applications CRC Press, Boca Raton (2004).
MR 2035186
[14] Horn, R. A., Johnson, C. R.:
Matrix Analysis. Cambridge University Press, Cambridge (1985).
MR 0832183 |
Zbl 0576.15001
[18] Liu, W-H., Sherman, A. H.:
Comparative analysis of the Cuthill-McKee and the reverse Cuthill-McKee ordering algorithms for sparse matrices. SIAM J. Numer. Anal. 13 (1976), 198-213.
DOI 10.1137/0713020 |
MR 0501813
[19] Mohar, B.:
The Laplacian spectrum of graphs. Graph theory, Combinatorics, and Applications Vol. 2. Proc. Sixth Quadrennial International Conf. on the Theory and Applications of Graphs, Kalamazoo, Michigan, 1988 Y. Alavi et all John Wiley & Sons, New York (1991), 871-898.
MR 1170831 |
Zbl 0840.05059
[20] Molitierno, J. J.:
The spectral radius of submatrices of Laplacian matrices for graphs with cut vertices. Linear Algebra Appl. 428 (2008), 1987-1999.
MR 2401634 |
Zbl 1137.05045
[21] Mueller, C., Martin, B., Lumsdaine, A.:
A comparison of vertex ordering algorithms for large graph visualization. Visualization Asia-Pacific Symposium on Visualization 2007, Sydney, Australia (2007), 141-148 doi: 10.1109/APVIS.2007.329289.
DOI 10.1109/APVIS.2007.329289
[24] Pothen, A., Simon, H. D., Liou, K. P.:
Partitioning sparse matrices with eigenvector of graphs. SIAM J. Matrix Anal. Appl. 11 (1990), 430-452.
DOI 10.1137/0611030 |
MR 1054210
[25] Rebollo, M., Carrascosa, C., Palomares, A., Pedroche, F.: Some examples of detection of connected components in undirected graphs by using the Laplacian matrix and the RCM algorithm. Int. J. Complex Systems in Science 2 (2012), 11-15.
[27] Saad, Y.:
Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied Mathematics Philadelphia (2003).
MR 1990645 |
Zbl 1031.65046