Previous |  Up |  Next

Article

Keywords:
zero-dimensional space; strongly zero-dimensional space; $\mathbb{N}$-compact space; Banaschewski compactification; pseudocompact space; functionally countable subalgebra; support; cellularity; remainder; almost $P$-space; Parovičenko space
Summary:
Let $X$ be a zero-dimensional space and $C_c(X)$ be the set of all continuous real valued functions on $X$ with countable image. In this article we denote by $C_c^K(X)$ (resp., $C_c^{\psi}(X))$ the set of all functions in $C_c(X)$ with compact (resp., pseudocompact) support. First, we observe that $C_c^K(X)=O_c^{\beta_0X\setminus X}$ (resp., $C^{\psi}_c(X)=M_c^{\beta_0X\setminus \upsilon_0X}$), where $\beta_0X$ is the Banaschewski compactification of $X$ and $\upsilon_0X$ is the $\mathbb{N}$-compactification of $X$. This implies that for an $\mathbb{N}$-compact space $X$, the intersection of all free maximal ideals in $C_c(X)$ is equal to $C_c^K(X)$, i.e., $M_c^{\beta_0X\setminus X}=C_c^K(X)$. By applying methods of functionally countable subalgebras, we then obtain some results in the remainder of the Banaschewski compactification. We show that for a non-pseudocompact zero-dimensional space $X$, the set $\beta_0X\setminus \upsilon_0X$ has cardinality at least $2^{2^{\aleph_0}}$. Moreover, for a locally compact and $\mathbb{N}$-compact space $X$, the remainder $\beta_0X\setminus X$ is an almost $P$-space. These results lead us to find a class of Parovičenko spaces in the Banaschewski compactification of a non pseudocompact zero-dimensional space. We conclude with a theorem which gives a lower bound for the cellularity of the subspaces $\beta_0X\setminus \upsilon_0X$ and $\beta_0X\setminus X$, whenever $X$ is a zero-dimensional, locally compact space which is not pseudocompact.
References:
[1] Bhattacharjee P., Knox M.L., McGovern W.W.: The classical ring of quotients of $C_c(X)$. Appl. Gen. Topol. 15 (2014), no. 2, 147–154. DOI 10.4995/agt.2014.3181 | MR 3267269 | Zbl 1305.54030
[2] Engelking R.: General Topology. PWN-Polish Sci. Publ., Warsaw, 1977. MR 0500780 | Zbl 0684.54001
[3] Engelking R., Mrówka S.: On $E$-compact spaces. Bull. Acad. Polon. Sci. 6 (1958), 429–436. MR 0097042 | Zbl 0083.17402
[4] Frankiewicz R., Zbierski P.: Hausdorff Gaps and Limits. Studies in logic and the foundations of mathematics, 132, North-Holland, Amsterdam, 1994. MR 1311476 | Zbl 0821.54001
[5] Ghadermazi M., Karamzadeh O.A.S., Namdari M.: On the functionally countable subalgebra of $C(X)$. Rend. Sem. Mat. Univ. Padova 129 (2013), 47–69. DOI 10.4171/RSMUP/129-4 | MR 3090630 | Zbl 1279.54015
[6] Gillman L., Jerison M.: Rings of Continuous Functions. Springer, New York-Heidelberg, 1976. MR 0407579 | Zbl 0327.46040
[7] Hager A., Kimber C., McGovern W.W.: Unique $a$-closure for some $l$-groups of rational valued functions. Czechoslovak Math. J. 55 (2005), 409–421. DOI 10.1007/s10587-005-0031-z | MR 2137147
[8] Hodel R.E., Jr.: Cardinal functions $I$. Handbook of Set-Theoretic Topology, Kunen K., Vaughan J.E. (eds.), North-Holland, Amsterdam, 1984, pp. 1–61. MR 0776620 | Zbl 0559.54003
[9] Johnson D.G., Mandelker M.: Functions with pseudocompact support. General Topology Appl. 3 (1973), 331–338. DOI 10.1016/0016-660X(73)90020-2 | MR 0331310 | Zbl 0277.54009
[10] Levy R.: Almost $P$-spaces. Canad. J. Math. 2 (1977), 284–288. DOI 10.4153/CJM-1977-030-7 | MR 0464203 | Zbl 0342.54032
[11] Mandelker M.: Round $z$-filters and round subsets of $\beta X$. Israel. J. Math. 7 (1969), 1–8. DOI 10.1007/BF02771740 | MR 0244951 | Zbl 0174.25604
[12] Mandelker M.: Supports of continuous functions. Trans. Amer. Math. Soc. 156 (1971), 73–83. DOI 10.1090/S0002-9947-1971-0275367-4 | MR 0275367 | Zbl 0197.48703
[13] Mrówka S.: On universal spaces. Bull. Acad. Polon. Sci. Cl. III. 4 (1956), 479–481. MR 0089401 | Zbl 0071.38301
[14] Mrówka S.: Structures of continuous functions III. Rings and lattices of integer-valued continuous functions. Vehr. Nederl. Akad. Weten. Sect. I. 68 (1965), 74–82. DOI 10.1016/S1385-7258(65)50008-1 | MR 0237580 | Zbl 0139.07404
[15] Mrówka S., Shore S.D.: Structures of continuous functions V. On homomorphisms of structures of continuous functions with zero-dimensional compact domain. Vehr. Nederl. Akad. Weten. Sect. I. 68 (1965), 92–94. MR 0237582
[16] Mrówka S.: On $E$-compact spaces II. Bull.Acad. Polon. Sci. 14 (1966), 597–605. Zbl 0161.19603
[17] Mrówka S.: Further results on $E$-compact spaces. I. Acta. Math. Hung. 120 (1968), 161–185. DOI 10.1007/BF02394609 | MR 0226576 | Zbl 0179.51202
[18] Mrówka S.: Structures of continuous functions. I. Acta. Math. Hung. 21(3-4) (1970), 239–259. MR 0269706 | Zbl 0229.46027
[19] Pierce R. S.: Rings of integer-valued continuous functions. Trans. Amer. Math. Soc. 100 (1961), 371–394. DOI 10.1090/S0002-9947-1961-0131438-8 | MR 0131438 | Zbl 0196.15401
[20] Porter J.R., Woods R.G.: Extensions and Absolutes of Hausdorff Spaces. Springer, New York, 1988. MR 0918341 | Zbl 0652.54016
[21] Veksler A.I.: $P'$-points, $P'$-sets, $P'$-spaces. A new class of order-continuous measures and functionals. Dokl. Akad. Nauk SSSR 14 (1973), 1445–1450. MR 0341447 | Zbl 0291.54046
Partner of
EuDML logo