Previous |  Up |  Next

Article

Keywords:
rings of continuous functions; comaximal graph; radius; girth; dominating number; clique number; zero cellularity; $P$-space; almost $P$-space; connected space; regular ring
Summary:
In this article we study the comaximal graph $\Gamma'_{_2}C(X)$ of the ring $C(X)$. We have tried to associate the graph properties of $\Gamma'_{_2}C(X)$, the ring properties of $C(X)$ and the topological properties of $X$. Radius, girth, dominating number and clique number of the $\Gamma'_{_2}C(X)$ are investigated. We have shown that $2\leq \operatorname{Rad}\Gamma'_{_2}C(X) \leq 3$ and if $|X|> 2$ then $\mathrm{girth } \Gamma'_{_2}C(X)= 3$. We give some topological properties of $X$ equivalent to graph properties of $\Gamma'_{_2}C(X)$. Finally we have proved that $X$ is an almost $P$-space which does not have isolated points if and only if $C(X)$ is an almost regular ring which does not have any principal maximal ideals if and only if $\operatorname{Rad}\Gamma'_{_2}C(X)= 3$.
References:
[1] Afkhami M., Barati Z., Khashyarmanesh K.: When the comaximal and zero-divisor graphs are ring graphs and outerplanar. Rocky Mountain J. Math. 44 (2014), no. 6, 1745–1761. DOI 10.1216/RMJ-2014-44-6-1745 | MR 3310946
[2] Afkhami M., Khashyarmanesh K.: On the cozero-divisor graphs and comaximal graphs of commutative rings. J. Algebra Appl. 12 (2013), no. 3, 1250173, 9pp. DOI 10.1142/S0219498812501733 | MR 3007910 | Zbl 1262.05075
[3] Akbari S., Habibi M., Majidinya A., Manaviyat R.: A note on comaximal graph of non-commutative rings. Algebr. Represent. Theory 16 (2013), no. 2, 303–307. DOI 10.1007/s10468-011-9309-z | MR 3035995 | Zbl 1263.05042
[4] Akbari S., Maimani H.R., Yassemi S.: When a zero-divisor graph is planar or a complete r-partite graph. J. Algebra 270 (2003), no. 1, 169–180. DOI 10.1016/S0021-8693(03)00370-3 | MR 2016655 | Zbl 1032.13014
[5] Amini A., Amini B., Momtahan E., Shirdareh Haghighi M.H.: On a graph of ideals. Acta Math. Hungar. 134 (2011), no. 3, 369–384. DOI 10.1007/s10474-011-0121-3 | MR 2886213 | Zbl 1299.05153
[6] Anderson D.F., Mulay S.B.: On the diameter and girth of a zero-divisor graph. J. Pure Appl. Algebra 210 (2007), no. 2, 543–550. DOI 10.1016/j.jpaa.2006.10.007 | MR 2320017 | Zbl 1119.13005
[7] Anderson D.D., Naseer M.: Beck's coloring of a commutative ring. J. Algebra 159 (1993), no. 2, 500–514. DOI 10.1006/jabr.1993.1171 | MR 1231228 | Zbl 0798.05067
[8] Anderson D.F., Badawi A.: On the zero-divisor graph of a ring. Comm. Algebra 36 (2008), no. 8, 3073–3092. MR 2440301 | Zbl 1152.13001
[9] Anderson D.F., Levy R., Shapiro J.: Zero-divisor graphs, von Neumann regular rings, and Boolean algebras. J. Pure Appl. Algebra 180 (2003), no. 3, 221–241. DOI 10.1016/S0022-4049(02)00250-5 | MR 1966657 | Zbl 1076.13001
[10] Anderson D.F., Livingston P.S.: The zero-divisor graph of a commutative ring. J. Algebra 217 (1999), no. 2, 434–447. DOI 10.1006/jabr.1998.7840 | MR 1700509 | Zbl 1035.13004
[11] Atiyah M.F., Macdonald I.G.: Introduction to Commutative Algebra. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. MR 0242802 | Zbl 0238.13001
[12] Azarpanah F., Motamedi M.: Zero-divisor graph of $C(X)$. Acta Math. Hungar. 108 (2005), no. 1–2, 25–36. DOI 10.1007/s10474-005-0205-z | MR 2155237 | Zbl 1092.54007
[13] Beck I.: Coloring of commutative rings. J. Algebra 116 (1988), no. 1, 208–226. DOI 10.1016/0021-8693(88)90202-5 | MR 0944156 | Zbl 0654.13001
[14] Biggs N.: Algebraic Graph Theory. Cambridge University Press, Cambridge, 1993. MR 1271140 | Zbl 0797.05032
[15] Bondy J.A., Murty U.S.R.: Graph Theory with Application. The Macmillan Press, New York, 1976. MR 0411988
[16] Dheena P., Elavarasan B.: On comaximal graphs of near-rings. Kyungpook Math. J. 49 (2009), no. 2, 283–288. DOI 10.5666/KMJ.2009.49.2.283 | MR 2554886 | Zbl 1184.16048
[17] Engelking R.: General Topology. Heldermann-Verlag, Berlin, 1989. MR 1039321 | Zbl 0684.54001
[18] Gillman L., Jerison M.: Rings of Continuous Functions. Transactions of the New York Academy of Sciences 27 (1964), no. 1 Series II, 5–6. DOI 10.1111/j.2164-0947.1964.tb03479.x | MR 0116199 | Zbl 0327.46040
[19] Jinnah M.I., Mathew Sh.C.: When is the comaximal graph split?. Comm. Algebra 40 (2012), no. 7, 2400–2404. DOI 10.1080/00927872.2011.591861 | MR 2948834 | Zbl 1247.13007
[20] Levy R., Shapiro J.: The zero-divisor graph of von Neumann regular rings. Comm. Algebra 30 (2002), no. 2, 745–750. DOI 10.1081/AGB-120013178 | MR 1883021 | Zbl 1055.13007
[21] Maimani H.R., Salimi M., Sattari A., Yassemi S.: Comaximal graph of commutative rings. J. Algebra 319 (2008), no. 4, 1801–1808. DOI 10.1016/j.jalgebra.2007.02.003 | MR 2383067 | Zbl 1141.13008
[22] Maimani H.R., Pournaki M.R., Tehranian A., Yassemi S.: Graphs attached to rings revisited. Arab. J. Sci. Eng. 36 (2011), no. 6, 997–1011. DOI 10.1007/s13369-011-0096-y | MR 2845527
[23] Mehdi-Nezhad E., Rahimi A.M.: Dominating sets of the comaximal and ideal-based zero-divisor graphs of commutative rings. Quaest. Math. 38 (2015), 1–17. DOI 10.2989/16073606.2014.981713 | MR 3420663
[24] Moconja S.M., Petrović Z.: On the structure of comaximal graphs of commutative rings with identity. Bull. Aust. Math. Soc. 83 (2011), no. 1, 11–21. DOI 10.1017/S0004972710001875 | MR 2765410 | Zbl 1222.13002
[25] Mulay Sh.B.: Cycles and symmetries of zero-divisors. Comm. Algebra 30 (2002), no. 7, 3533–3558. DOI 10.1081/AGB-120004502 | MR 1915011 | Zbl 1087.13500
[26] Petrovic Z.Z., Moconja S.M.: On graphs associated to rings. Novi Sad J. Math. 38 (2008), no. 3, 33–38. MR 2598647 | Zbl 1224.13001
[27] Sharma P.K., Bhatwadekar S.M.: A note on graphical representation of rings. J. Algebra 176 (1995), no. 1, 124–127. DOI 10.1006/jabr.1995.1236 | MR 1345297 | Zbl 0838.05051
[28] Wang H.-J.: Co-maximal graph of non-commutative rings. Linear Algebra Appl. 430 (2009), no. 2, 633–641. DOI 10.1016/j.laa.2008.08.026 | MR 2469317 | Zbl 1151.05019
[29] Willard S.: General Topology. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1970. MR 0264581 | Zbl 1052.54001
[30] Ye M., Wu T., Liu Q., Yu H.: Implements of graph blow-up in co-maximal ideal graphs. Comm. Algebra 42 (2014), no. 6, 2476–2483. DOI 10.1080/00927872.2012.762924 | MR 3169718
Partner of
EuDML logo