Previous |  Up |  Next

Article

Keywords:
Banach space; Newton's method; local convergence; radius of convergence
Summary:
We present a local convergence analysis of a one parameter Jarratt-type method. We use this method to approximate a solution of an equation in a Banach space setting. The semilocal convergence of this method was recently carried out in earlier studies under stronger hypotheses. Numerical examples are given where earlier results such as in [Ezquerro J.A., Hernández M.A., {New iterations of $R$-order four with reduced computational cost}, BIT Numer. Math. {49} (2009), 325--342] cannot be used to solve equations but our results can be applied.
References:
[1] Amat S., Busquier S., Negra M.: Adaptive approximation of nonlinear operators. Numer. Funct. Anal. Optim. 25 (2004), 397–405. DOI 10.1081/NFA-200042628 | MR 2106266 | Zbl 1071.65077
[2] Argyros I.K.: Computational Theory of Iterative Methods. Studies in Computational Mathematics, 15, C.K. Chui and L. Wuytack (Eds.), Elsevier Publ. Co., New York, 2007. MR 2356038 | Zbl 1147.65313
[3] Argyros I.K.: A semilocal convergence analysis for directional Newton methods. Math. Comput. 80 (2011), 327–343. DOI 10.1090/S0025-5718-2010-02398-1 | MR 2728982 | Zbl 1211.65057
[4] Argyros I.K., Hilout S.: Weaker conditions for the convergence of Newton's method. J. Complexity 28 (2012), 364–387. DOI 10.1016/j.jco.2011.12.003 | MR 2914733 | Zbl 1245.65058
[5] Argyros I.K., Hilout S.: Estimating upper bounds on the limit points of majorizing sequences for Newton's method. Numer. Algorithms 62 (2013), 115–132. DOI 10.1007/s11075-012-9570-1 | MR 3009558 | Zbl 1259.65080
[6] Argyros I.K., Hilout S.: Computational methods in nonlinear analysis. Efficient algorithms, fixed point theory and applications, World Scientific, Hackensack, NJ, 2013. MR 3134688 | Zbl 1279.65062
[7] Candella V., Marquina A.: Recurrence relations for rational cubic methods II: the Chebyshev method. Computing 45 (1990), 355–367. DOI 10.1007/BF02238803 | MR 1088077
[8] Candella V., Marquina A.: Recurrence relations for rational cubic methods I: the Halley method. Computing 44 (1990), 169–184. DOI 10.1007/BF02241866 | MR 1053497
[9] Cătinaş E.: The inexact, inexact perturbed, and quasi-Newton methods are equivalent models. Math. Comp. 74 (2005), 291–301. DOI 10.1090/S0025-5718-04-01646-1 | MR 2085412 | Zbl 1054.65050
[10] Chun C., Stănică P., Neta B.: Third-order family of methods in Banach spaces. Comput. Math. Appl. 61 (2011), 1665–1675. DOI 10.1016/j.camwa.2011.01.034 | MR 2775931 | Zbl 1217.65101
[11] Ezquerro J.A., Hernández M.A.: New iterations of $R$-order four with reduced computational cost. BIT Numer. Math. 49 (2009), 325–342. DOI 10.1007/s10543-009-0226-z | MR 2507604 | Zbl 1170.65038
[12] Gutiérrez J.M., Hernández M.A.: Third-order iterative methods for operators with bounded second derivative. J. Comput. Math. Appl. 82 (1997), 171–183. DOI 10.1016/S0377-0427(97)00076-9 | Zbl 0891.65064
[13] Hernández M.A., Salanova M.A.: Sufficient condition for semilocal convergence of a fourth order multipoint iterative method for solving equations in Banach spaces. Southwest J. Pure Appl. Math. 1999, no. 1, 29–40. MR 1717585
[14] Jarratt P.: Some fourth order multipoint iterative methods for solving equations. Math. Comput. 20 (1996), 434–437. DOI 10.1090/S0025-5718-66-99924-8 | Zbl 0229.65049
[15] Kantorovich L.V., Akilov G.P.: Functional Analysis. Pergamon Press, Oxford, 1982. MR 0664597 | Zbl 0555.46001
[16] Kou J.-S., Li Y.-T., Wang X.-H.: A modification of Newton method with third-order convergence. Appl. Math. Comput. 181 (2006), 1106–1111. DOI 10.1016/j.amc.2006.01.076 | MR 2269989
[17] Ortega L.M., Rheinboldt W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York, 1970. MR 0273810 | Zbl 0949.65053
[18] Parida P.K., Gupta D.K.: Recurrence relations for a Newton-like method in Banach spaces. J. Comput. Appl. Math. 206 (2007), 873–887. DOI 10.1016/j.cam.2006.08.027 | MR 2333719 | Zbl 1119.47063
[19] Potra F.A., Pták V.: Nondiscrete Induction and Iterative Processes. Research Notes in Mathematics, 103, Pitman, Boston, 1984. MR 0754338 | Zbl 0549.41001
[20] Proinov P.D.: General local convergence theory for a class of iterative processes and its applications to Newton's method. J. Complexity 25 (2009), 38–62. DOI 10.1016/j.jco.2008.05.006 | MR 2475307 | Zbl 1158.65040
[21] Rheinboldt W.C.: An adaptive continuation process for solving systems of nonlinear equations. Banach Center Publ., 3, PWN, Warsaw, 1978, pp. 129–142. DOI 10.4064/-3-1-129-142 | MR 0514377 | Zbl 0378.65029
[22] Traub J.F.: Iterative Methods for the Solution of Equations. AMS Chelsea Publishing, 1982. Zbl 0672.65025
Partner of
EuDML logo