Previous |  Up |  Next

Article

Keywords:
torsion theory; $\tau$-rational submodules; $\tau$-closed submodules; $\tau$-extending modules
Summary:
In this paper we introduce the concept of $\tau$-extending modules by $\tau$-rational submodules and study some properties of such modules. It is shown that the set of all $\tau$-rational left ideals of $_RR$ is a Gabriel filter. An $R$-module $M$ is called $\tau$-extending if every submodule of $M$ is $\tau$-rational in a direct summand of $M$. It is proved that $M$ is $\tau$-extending if and only if $M = Rej_ME(R/\tau(R))\oplus N$, such that $N$ is a $\tau$-extending submodule of $M$. An example is given to show that the direct sum of $\tau$-extending modules need not be $\tau$-extending.
References:
[1] Anderson F.W., Fuller K.R.: Rings and Categories of Modules. Springer, New York, 1992. MR 1245487 | Zbl 0765.16001
[2] Bland P.E.: Topics in Torsion Theory. Wiley-VCH Verlag, Berlin, 1998. MR 1640903 | Zbl 0899.16013
[3] Bican L., Kepka T., Němec P.: Rings, Modules, and Preradicals. Marcel Dekker, New York, 1982. MR 0655412 | Zbl 0483.16026
[4] Çeken S., Alkan M.: On $\tau$-extending modules. Mediterr. J. Math. 9 (2012), 129–142. DOI 10.1007/s00009-010-0096-2 | MR 2885489 | Zbl 1258.16033
[5] Charalambides S., Clark J.: CS modules relative to a torsion theory. Mediterr. J. Math. 4 (2007), 291–308. DOI 10.1007/s00009-007-0119-9 | MR 2349889 | Zbl 1130.16002
[6] Clark J., Lomp C., Vanaja N., Wisbauer R.: Lifting Modules. Birkhäuser, Basel, 2006. MR 2253001 | Zbl 1102.16001
[7] Crivei S.: On $\tau$-complemented modules. Mathematica (Cluj) 45(68) (2003), no. 2, 127–136. MR 2056044 | Zbl 1084.16505
[8] Dogruöz S.: Extending modules relative to a torsion theory. Czechoslovak Math. J. 58(133) (2008), 381–393. DOI 10.1007/s10587-008-0022-y | MR 2411096 | Zbl 1166.16014
[9] Dung N.V., Huynh D.V., Smith P.F., Wisbauer R.: Extending Modules. Pitman Research Notes in Mathematics Series, 313, Longman Scientific and Technical, Harlow, 1994. MR 1312366 | Zbl 0841.16001
[10] Gomez Pardo J.L.: Spectral Gabriel topologies and relative singular functors. Comm. Algebra 13 (1985), no. 1, 21–57. DOI 10.1080/00927878508823147 | MR 0768085 | Zbl 0552.16009
[11] Lam T.Y.: A First Course in Noncommutative Rings. Springer, New York, 1990. MR 1838439 | Zbl 0980.16001
[12] Lam T.Y.: Lectures on Modules and Rings. Springer, New York, 1998. MR 1653294 | Zbl 0911.16001
[13] Mohamed S.H., Müller B.J.: Continuous and Discrete Modules. London Math. Soc. Lecture Notes Series, 147, Cambridge Univ. Press, Cambridge, 1990. MR 1084376 | Zbl 0701.16001
[14] Mohamed S., Müller B., Singh S.: A note on the decomposition of $\sigma$-injective modules. Comm. Algebra 12 (1984), 663–672. DOI 10.1080/00927878408823021 | MR 0735140 | Zbl 0542.13003
[15] Smith P.F., Tercan A.: Generalizations of CS-modules. Comm. Algebra 21 (1993), no. 6, 1809–1847. DOI 10.1080/00927879308824655 | MR 1215548 | Zbl 0779.16002
[16] Smith P.F., Viola-Prioli A.M., Viola-Prioli J.E.: Modules complemented with respect to a torsion theory. Comm. Algebra 25 (1997), 1307–1326. DOI 10.1080/00927879708825921 | MR 1437673 | Zbl 0879.16017
[17] Stenström B.: Rings of Quotients. Springer, Berlin, 1975. MR 0389953
Partner of
EuDML logo