[1] Baddeley, A., Turner, R.:
An R Package for analyzing spatial point patterns. J. Stat. Software 12 (2005), 1-42.
DOI 10.18637/jss.v012.i06
[2] Diggle, P. J., Gratton, R. J.:
Monte Carlo methods of inference for implicit statistical models. J. R. Stat. Soc., Ser. B 46 (1984), 193-227.
MR 0781880 |
Zbl 0561.62035
[4] Dvořák, J., Prokešová, M.:
Moment estimation methods for stationary spatial Cox processes---a comparison. Kybernetika 48 (2012), 1007-1026.
MR 3086866 |
Zbl 1297.62201
[6] Guttorp, P., Thorarinsdottir, T. L.: Bayesian inference for non-Markovian point processes. J. M. Montero, M. Schlather Advances and Challenges in Space-Time Modelling of Natural Events Lecture Notes in Statistics 207 Springer, Berlin 79-102 (2012).
[7] Illian, J., Penttinen, A., Stoyan, H., Stoyan, D.:
Statistical Analysis and Modelling of Spatial Point Patterns. Statistics in Practice. John Wiley & Sons, Chichester (2008).
MR 2384630
[8] Møller, J., Waagepetersen, R. P.:
Statistical Inference and Simulation for Spatial Point Processes. Monographs on Statistics and Applied Probability 100 Chapman and Hall/CRC, Boca Raton (2004).
MR 2004226 |
Zbl 1044.62101
[9] Møller, J., Waagepetersen, R. P.:
Modern statistics for spatial point processes. Scand. J. Stat. 34 (2007), 643-684.
MR 2392447 |
Zbl 1157.62067
[12] Neyman, J., Scott, E. L.:
A theory for the spatial distribution of galaxies. Astrophys. J. 116 (1952), 144-163.
DOI 10.1086/145599 |
MR 0053640
[13] Stoyan, D., Kendall, W. S., Mecke, J.:
Stochastic Geometry and Its Applications. Wiley Series in Probability and Mathematical Statistics John Wiley & Sons, Chichester (1995).
MR 0895588 |
Zbl 0838.60002
[14] Tanaka, U., Ogata, Y., Stoyan, D.:
Parameter estimation and model selection for Neyman-Scott point processes. Biom. J. 50 (2008), 43-57.
DOI 10.1002/bimj.200610339 |
MR 2414637
[15] Research, Wolfram, Inc.:
Mathematica, Version 8.0. Champaign, IL (2010).
MR 1951106