[2] Blaschke, W.: Integralgeometrie 1. Actualités Scientifiques et Industrielles 252 Hermann & Cie., Paris German (1935).
[3] Cartan, E.: Le principe de dualité et certaines intégrales multiples de l'espace tangentiel et de l'espace réglé. Bull. Soc. Math. Fr. 24 (1896), 140-177 French.
[4] Crofton, M. W.:
On the theory of local probability, applied to Straight Lines drawn at random in a plane; the methods used being also extended to the proof of certain new Theorems in the Integral Calculus. Philos. Trans. R. Soc. Lond. 158 (1868), 181-199.
DOI 10.1098/rstl.1868.0008
[6] Dvořák, J., Jensen, E. B.:
On semiautomatic estimation of surface area. J. Microsc. 250 (2013), 142-57.
DOI 10.1111/jmi.12030
[10] Hirsch, M. W.:
Differential Topology. Corrected reprint of the 1976 original. Graduate Texts in Mathematics 33 Springer, New York (1994).
MR 1336822
[11] Petkantschin, B.:
Integralgeometrie 6. Zusammenhänge zwischen den Dichten der linearen Unterräume im $n$-dimensionalen Raum. Abh. Math. Semin. Hamb. Univ. 11 (1936), 249-310 German.
DOI 10.1007/BF02940729
[12] Ren, D.-l.:
Topics in Integral Geometry. Series in Pure Mathematics 19 World Scientific, Singapore (1994).
MR 1336595 |
Zbl 0842.53001
[13] Santal{ó}, L. A.:
Integral Geometry and Geometric Probability. Cambridge Mathematical Library Cambridge University Press, Cambridge (2004).
MR 2162874 |
Zbl 1116.53050
[14] Schneider, R., Weil, W.:
Stochastic and Integral Geometry. Probability and Its Applications Springer, Berlin (2008).
MR 2455326 |
Zbl 1175.60003
[16] Thórisdóttir, Ó., Rafati, A. H., Kiderlen, M.:
Estimating the surface area of nonconvex particles from central planar sections. J. Micrsoc. 255 (2014), 49-64.
DOI 10.1111/jmi.12136